Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiêu chuẩn hóa và xác thực phương pháp sắc ký lớp mỏng hiệu năng cao để định lượng aflatoxin B1 và ứng dụng trong giám sát mức độ ô nhiễm của các sản phẩm thực phẩm được tiêu thụ tại khu vực Mumbai
Tóm tắt
Aflatoxin B1 (AFB1) là một chất ô nhiễm tự nhiên có tính gây ung thư trong sản phẩm nông nghiệp, được quy định ở mức độ phần tỷ (ppb); do đó, một phương pháp được xác thực để phân tích AFB1 là vô cùng quan trọng. Trong nghiên cứu này, một phương pháp sắc ký lớp mỏng hiệu năng cao (HPTLC) đã được tiêu chuẩn hóa và xác thực liên quan đến tính tuyến tính, độ nhạy, độ chính xác và độ chính xác để định lượng AFB1. Ba kỹ thuật chiết xuất sử dụng các hệ dung môi khác nhau, bao gồm phương pháp QuEChERS (nhanh, dễ, rẻ, hiệu quả, bền và an toàn), phương pháp nhánh ô nhiễm và phương pháp Best Foods đã được đánh giá khả năng chiết xuất AFB1 trong các sản phẩm thực phẩm, trong đó phương pháp QuEChERS sử dụng acetonitril‒methanol (40:60, V/V) cho tỷ lệ hồi phục AFB1 cao nhất trong tất cả các sản phẩm thực phẩm. Tỷ lệ hồi phục AFB1 cao nhất được tìm thấy trong mẫu ớt khô (89.98%), trong khi tỷ lệ hồi phục thấp nhất được ghi nhận trong mẫu lúa mì (68.20%). Phương pháp HPTLC tối ưu với chloroform‒acetone (9:1, V/V) làm pha di động cho thấy một vạch AFB1 gọn gàng tại giá trị RF là 0.36 ± 0.02. Phân tích hồi quy tuyến tính của AFB1 cho thấy tính tuyến tính tốt trên khoảng 10, 20, 40, 60, 80, 100, 120 ng/spot với giá trị hồi quy là 0.9923 và %RSD dưới 1. Giới hạn phát hiện (LOD) và giới hạn định lượng (LOQ) lần lượt được xác định là 1.133 ng/band và 3.434 ng/band. Phương pháp HPTLC tối ưu đã được sử dụng để đánh giá hàm lượng AFB1 trong các mẫu hàng hóa thị trường của lạc, ngô, gạo, lúa mì và ớt khô từ khu vực Mumbai và phát hiện rằng 8 mẫu lạc, 5 mẫu ngô, 5 mẫu lúa mì và 7 mẫu ớt trong số 20 mẫu, đều có nồng độ AFB1 vượt quá giới hạn quy định cho phép của Ấn Độ là 30 ppb.
Từ khóa
#aflatoxin B1 #HPTLC #chiết xuất #thực phẩm #ô nhiễm #giám sátTài liệu tham khảo
Liew WPP, Mohd-Redzwan S (2018) Mycotoxin: its impact on gut health and microbiota. Front Cell Infect Microbiol 8:60. https://doi.org/10.3389/fcimb.2018.00060
Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG (2017) Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol 7:2170. https://doi.org/10.3389/fmicb.2016.02170
Ben Taheur F, Kouidhi B, Al Qurashi YMA, Ben Salah-Abbès J, Chaieb K (2019) Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160:12–22. https://doi.org/10.1016/j.toxicon.2019.02.001
Jiang W, Wang Z, Nölke G, Zhang J, Niu L, Shen J (2013) Simultaneous determination of aflatoxin B1 and aflatoxin M1 in food matrices by enzyme-linked immunosorbent assay. Food Anal Methods 6:767–774. https://doi.org/10.1007/s12161-012-9484-5
Bertuzzi T, Rastelli S, Mulazzi A, Pietri A (2012) Evaluation and Improvement of extraction methods for the analysis of aflatoxins B1, B2, G1 and G2 from naturally contaminated maize. Food Anal Methods 5:512–519. https://doi.org/10.1007/s12161-011-9274-5
Alshannaq A, Yu JH (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632. https://doi.org/10.3390/ijerph14060632
Kumar V, Basu MS, Rajendran TP (2008) Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Prot 27:891–905. https://doi.org/10.1016/j.cropro.2007.12.011
Fedlu M, Seid A, Wollelie A, Mama A (2019) Aflatoxin and its public health significance: a review. J Dairy Vet Sci. https://doi.org/10.19080/jdvs.2019.12.555837
Shannon GM, Shotwell OL, Kwolek WF (1983) Extraction and thin layer chromatography of aflatoxin B1 in mixed feeds. J Assoc Offic Anal Chem 66:582–586. https://doi.org/10.1093/jaoac/66.3.582
De Castro L, Vargas EA (2001) Determining aflatoxins B1, B2, G1 and G2 in maize using florisil clean up with thin layer chromatography and visual and densitometric quantification. Ciência e Tecnol Aliment 21:115–122. https://doi.org/10.1590/s0101-20612001000100024
Patterson DSP, Glancy EM, Roberts BA (1978) The estimation of aflatoxin M1 in milk using a two dimensional thin layer chromatographic method suitable for survey work. Food Cosmet Toxicol 16:49–50. https://doi.org/10.1016/S0015-6264(78)80327-7
Ahmed Abdullah Murshed S, Bacha N, Alharazi T (2019) Detection of Total Aflatoxins in Groundnut and Soybean Samples in Yemen Using Enzyme-Linked Immunosorbent Assay. J Food Qual 2019. Article ID 1614502. https://doi.org/10.1155/2019/1614502
Zheng MZ, Richard JL, Binder J (2006) A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161:261–273. https://doi.org/10.1007/s11046-006-0215-6
Martínez-Miranda M, Taborda-Ocampo G, Rosero-Moreano M (2015) Validation of a high performance liquid chromatography method for aflatoxins determination in corn arepas. J Braz Chem Soc 26:797–803. https://doi.org/10.5935/0103-5053.20150042
Ouakhssase A, Chahid A, Choubbane H, Aitmazirt A, Addi EA (2019) Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC–MS/MS)method for the determination of aflatoxins in maize. Heliyon 5:e01565. https://doi.org/10.1016/j.heliyon.2019.e01565
Magnoli AP, González Pereyra ML, Monge MP, Cavaglieri LR, Chiacchiera SM (2018) Validation of a liquid chromatography/tandem mass spectrometry method for the detection of aflatoxin B1 residues in broiler liver. Rev Argent Microbiol 50:157–164. https://doi.org/10.1016/j.ram.2017.04.012
Yao H, Hruska Z, Diana Di Mavungu J (2015) Developments in detection and determination of aflatoxins. World Mycotoxin J 8:181–191. https://doi.org/10.3920/WMJ2014.1797
Food Safety and Standards Authority of India (FSSAI) Food Safety and Standards (Contaminants, Toxins and Residues) Regulations 2011. Ministry of Health and Family Welfare, New Delhi. https://fssai.gov.in/upload/uploadfiles/files/FssaiRules_Eng.pdf
Commission of the European Communities (2006) Commission Regulation (EC) No 401/2006 of 23 February; Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official J. Eur. Union 70:12–34. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&qid=1490946469496&from=NL
Trucksess M, Weaver C, Oles C, Ovidio KD, Rader J (2006) Determination of aflatoxins and ochratoxin a in ginseng and other botanical roots by immunoaffinity column cleanup and liquid chromatography with fluorescence detection. J AOAC Int 89:624–630. https://doi.org/10.1093/jaoac/89.3.624
Food Safety and Standards Authority of India (FSSAI) (2016) Manual of Methods of Analysis of Foods. Manual for Methods of Analysis of Mycotoxins. Ministry of Health and Family Welfare, New Delhi. https://old.fssai.gov.in/Portals/0/Pdf/Manual_Mycotoxins_25_05_2016.pdf
Abdelaleem EA, Naguib IA, Zaazaa HE, Hussein EA (2016) Development and validation of HPLC and HPTLC methods for determination of cefoperazone and its related impurities. J Chromatogr Sci 54:179–186. https://doi.org/10.1093/chromsci/bmv125
Sharma R, Kumar J (2018) Development and validation of a high-performance thin-layer chromatographic method for the simultaneous determination of levamisole and cocaine in seized cocaine sample. J Planar Chromatogr 31:383–388. https://doi.org/10.1556/1006.2018.31.5.6
Gritti F, Guiochon G (2013) The van Deemter equation: assumptions, limits, and adjustment to modern high performance liquid chromatography. J Chromatogr A 1302:1–13. https://doi.org/10.1016/j.chroma.2013.06.032
Kotinagu K, Mohanamba T, Rathna Kumari L (2015) Assessment of aflatoxin B1 in livestock feed and feed ingredients by high-performance thin layer chromatography. Vet World 8:1396–1399. https://doi.org/10.14202/vetworld.2015.1396-1399
Măruţoiu C, Puiu S, Moise M, Soran L, Măruţoiu O, Boboş L (2007) Optimization of the separation of some aflatoxins by thin-layer chromatography. J Planar Chromatogr 17:372–374. https://doi.org/10.1556/jpc.17.2004.5.10
Takagi K, Toyoda M, Shimizu M, Satoh T, Saito Y (1994) Determination of tomatine in foods by liquid chromatography after derivatization. J Chromatogr A 659:127–131. https://doi.org/10.1016/0021-9673(94)85014-3
Peng Z, Yibing Z, Weidong Z (1999) Determination of Aflatoxins B1, B2, G1, G2 in peanuts by high performance thin layer chromatography with multifunction clean-up column. J Instrum Anal 18:62–64
Patel RB, Patel MR, Bhatt KK, Patel BG (2011) Development and validation of HPTLC method for estimation of carbamazepine in formulations and its in vitro release study. Chromatogr Res Int 2011:1–8. https://doi.org/10.4061/2011/684369
Gurav NP, Medhe S (2018) Analysis of Aflatoxins B1, B2, G1 and G2 in Peanuts: Validation Study. Anal Chem Ind J 17:126. https://www.tsijournals.com/articles/analysis-of-aflatoxins-b1-b2-g1-and-g2-in-peanuts-validation-study-13569.html
Cimetiere N, Soutrel I, Lemasle M, Laplanche A, Crocq A (2013) Standard addition method for the determination of pharmaceutical residues in drinking water by SPE–LC–MS/MS. Environ Technol (UK) 34:3031–3041. https://doi.org/10.1080/09593330.2013.800563
Hajmalek M, Goudarzi M, Ghaffari S, Attar H, Mazlaghan MG (2016) Development and validation of a HPTLC method for analysis of sunitinib malate. Brazilian J Pharm Sci 52:595–602. https://doi.org/10.1590/S1984-82502016000400003
Shantha T (1999) Critical evaluation of methods available for the estimation of aflatoxin B1 in chilli powder. J Food Sci Technol 36:163–165
Choochuay S, Phakam, Jala P, Maneeboon T, Tansakul N (2018) Determination of aflatoxin B1 in feedstuffs without clean-up step by high-performance liquid chromatography. Int J Anal Chem 2018. Article ID 4650764. https://doi.org/10.1155/2018/4650764
Jettanajit A, Nhujak T (2016) Determination of mycotoxins in brown rice Using QuEChERS sample preparation and UHPLC–MS-MS. J Chromatogr Sci 54:720–729. https://doi.org/10.1093/chromsci/bmv244
Broszat M, Welle C, Wojnowski M, Ernst H, Spangenberg B (2010) A versatile method for quantification of aflatoxins and ochratoxin A in dried figs. J Planar Chromatogr 23:193–197. https://doi.org/10.1556/JPC.23.2010.3.5
Ali N (2019) Aflatoxins in rice: Worldwide occurrence and public health perspectives. Toxicol. Reports 6, no. November, pp. 1188–1197. https://doi.org/10.1016/j.toxrep.2019.11.007
Ravi Teja M, Vijay Krishna Kumar K, Srilakshmi P et al (2017) Prevalence of Aspergillus flavus Infection and Aflatoxin Contamination of Groundnut in Telangana and Andhra Pradesh. Int J Pure Appl Biosci 5:1603–1614. https://doi.org/10.18782/2320-7051.3058
Chandra H, Bahuguna J, Singh A (2013) Detection of aflatoxin in Zea mays L. from Indian markets by competitive ELISA. Octa J Biosci 1:62–68
Siruguri V, Uday Kumar P, Raghu P et al (2012) Aflatoxin contamination in stored rice variety PAU 201 collected from Punjab, India. Indian J Med Res 136:89–97
Toteja GS, Mukherjee A, Diwakar S et al (2006) Aflatoxin B1 contamination in wheat grain samples collected from different geographical regions of India: a multicenter study. J Food Prot 69:1463–1467. https://doi.org/10.4315/0362-028X-69.6.1463
Reddy KRN, Reddy CS, Muralidharan K (2009) Detection of Aspergillus spp. and aflatoxin B1 in rice in India. Food Microbiol 26:27–31. https://doi.org/10.1016/j.fm.2008.07.013
Reddy SV, Kiran Mayi D, Uma Reddy M, Thirumala-Devi K, Reddy DVR (2001) Aflatoxins B1 in different grades of chillies (Capsicum annum L.) in India as determined by indirect competitive-ELISA. Food Addit Contam 18:553–558. https://doi.org/10.1080/02652030119491
Ioannou-Kakouri E, Aletrari M, Christou E, Hadjioannou-Ralli A, Koliou A, Akkelidou D (1999) Surveillance and control of aflatoxins B1, B2, G1, G2, and M1 in foodstuffs in the Republic of Cyprus: 1992–1996. J AOAC Int 82:883–892. https://doi.org/10.1093/jaoac/82.4.883
Nawaz S, Coker R, Haswell S (1995) HPTLC a valuable chromatographic tool for the analysis of aflatoxins. J Planar Chromatogr 8:4–9
Pandey MK (2019) Mitigating aflatoxin contamination in groundnut through a combination of genetic resistance and post-harvest management practices. Toxins Basel. https://doi.org/10.3390/toxins11060315
Grzywnowicz K, Nowicka M (2007) TLC identification of occupationally relevant mycotoxins. J Planar Chromatogr 20:69–71. https://doi.org/10.1556/jpc.20.2007.1.12