Staged Lengthening Arthroplasty for Pediatric Osteosarcoma around the Knee

Ovid Technologies (Wolters Kluwer Health) - Tập 468 - Trang 1660-1668 - 2009
Chang-Bae Kong1, Soo-Yong Lee1, Dae-Geun Jeon1
1Department of Orthopedic Surgery, Korea Cancer Center Hospital, Seoul, Korea

Tóm tắt

Orthopaedic oncologists often must address leg-length discrepancy after resection of tumors in growing patients with osteosarcoma. There are various alternatives to address this problem. We describe a three-stage procedure: (1) temporary arthrodesis, (2) lengthening by Ilizarov apparatus, and (3) tumor prosthesis. We asked (1) to what extent are affected limbs actually lengthened; (2) how many of the patients who undergo a lengthening procedure eventually achieve joint arthroplasty; and (3) can the three-stage procedure give patients a functioning joint with equalization of limb length? We reviewed 56 patients (younger than 14 years) with osteosarcoma who had staged lengthening arthroplasty between 1991 and 2004. Thirty-five of the 56 patients (63%) underwent soft tissue lengthening, and of these 35, 28 (50% of the original group of 56) had implantation of a mobile joint. Three of the 28 prostheses were later removed owing to infection after arthroplasty. The overall average length gained was 7.8 cm (range, 4–14 cm), and 25 (71%) of the 35 patients had a mobile joint at final followup. The average Musculoskeletal Tumor Society functional score was 23.2 (range, 15–28) and limb-length discrepancy at final followup was 2.6 cm (range, 0–6.5 cm). Although most mobile joints had an acceptable ROM (average, 74.2°; range, 35°–110°), extension lag was frequent. Our approach is one option for skeletally immature patients, especially in situations where an expandable prosthesis is not available. However, this technique requires multiple stages and would be inappropriate for patients who cannot accept prolonged functional deficit owing to a limited lifespan or other reasons. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

Tài liệu tham khảo

Abudu A, Grimer R, Tillman R, Carter S. The use of prostheses in skeletally immature patients. Orthop Clin North Am. 2006;37:75–84. Arkader A, Viola DC, Morris CD, Boland PJ, Healey JH. Coaxial extendible knee equalizes limb length in children with osteogenic sarcoma. Clin Orthop Relat Res. 2007;459:60–65. Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am. 1997;79:1243–1258. Benedetti MG, Catani F, Donati D, Simoncini L, Giannini S. Muscle performance about the knee joint in patients who had distal femoral replacement after resection of a bone tumor: an objective study with use of gait analysis. J Bone Joint Surg Am. 2000;82:1619–1625. Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, Neuenschwander S. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol. 2004;34:595–605. Capanna R, Biagini R, Ruggieri P, Bettelli G, Casadei R, Campanacci M. Temporary resection-arthrodesis of the knee using an intramedullary rod and bone cement. Int Orthop. 1989;13:253–258. Cool WP, Carter SR, Grimer RJ, Tillman RM, Walker PS. Growth after extendible endoprosthetic replacement of the distal femur. J Bone Joint Surg Br. 1997;79:938–942. Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, Raymond AK, Lewis VO, Anderson PM, Bassett RL Jr, Harrell RK, Marom EM. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50:340–347. Eckardt JJ, Kabo JM, Kelley CM, Ward WG Sr, Asavamongkolkul A, Wirganowicz PZ, Yang RS, Eilber FR. Expandable endoprosthesis reconstruction in skeletally immature patients with tumors. Clin Orthop Relat Res. 2000;373:51–61. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;286:241–246. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res. 1980;153:106–120. Goldfarb CA, Murtha YM, Gordon JE, Manske PR. Soft-tissue distraction with a ring external fixator before centralization for radial longitudinal deficiency. J Hand Surg Am. 2006;31:952–959. Grimer RJ, Belthur M, Carter SR, Tillman RM, Cool P. Extendible replacements of the proximal tibia for bone tumours. J Bone Joint Surg Br. 2000;82:255–260. Hardes J, Gebert C, Schwappach A, Ahrens H, Streitburger A, Winkelmann W, Gosheger G. Characteristics and outcome of infections associated with tumor endoprostheses. Arch Orthop Trauma Surg. 2006;126:289–296. Hawkins DS, Conrad EU 3rd, Butrynski JE, Schuetze SM, Eary JF. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer. 2009;115:3519–3525. Kim MS, Cho WH, Song WS, Lee SY, Jeon DG. Time dependency of prognostic factors in patients with stage II osteosarcomas. Clin Orthop Relat Res. 2007;463:157–165. Muschler GF, Ihara K, Lane JM, Healey JH, Levine MJ, Otis JC, Burstein AH. A custom distal femoral prosthesis for reconstruction of large defects following wide excision for sarcoma: results and prognostic factors. Orthopedics. 1995;18:527–538. Neel MD, Wilkins RM, Rao BN, Kelly CM. Early multicenter experience with a noninvasive expandable prosthesis. Clin Orthop Relat Res. 2003;415:72–81. Ozaki T, Nakatsuka Y, Kunisada T, Kawai A, Dan’ura T, Naito N, Inoue H. High complication rate of reconstruction using Ilizarov bone transport method in patients with bone sarcomas. Arch Orthop Trauma Surg. 1998;118:136–139. Sabharwal S, Finuoli AL, Ghobadi F. Pre-centralization soft tissue distraction for Bayne type IV congenital radial deficiency in children. J Pediatr Orthop. 2005;25:377–381. Schindler OS, Cannon SR, Briggs TW, Blunn GW. Stanmore custom-made extendible distal femoral replacements: clinical experience in children with primary malignant bone tumours. J Bone Joint Surg Br. 1997;79:927–937. Torricelli P, Montanari N, Spina V, Manfrini M, Bertoni F, Saguatti G, Romagnoli R. Dynamic contrast enhanced magnetic resonance imaging subtraction in evaluating osteosarcoma response to chemotherapy. Radiol Med. 2001;101:145–151. Tsuchiya H, Abdel-Wanis ME, Sakurakichi K, Yamashiro T, Tomita K. Osteosarcoma around the knee: intraepiphyseal excision and biological reconstruction with distraction osteogenesis. J Bone Joint Surg Br. 2002;84:1162–1166. Unwin PS, Walker PS. Extendible endoprostheses for the skeletally immature. Clin Orthop Relat Res. 1996;322:179–193. Wilkins RM, Camozzi AB, Gitelis SB. Reconstruction options for pediatric bone tumors about the knee. J Knee Surg. 2005;18:305–309. Wirganowicz PZ, Eckardt JJ, Dorey FJ, Eilber FR, Kabo JM. Etiology and results of tumor endoprosthesis revision surgery in 64 patients. Clin Orthop Relat Res. 1999;358:64–74.