Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3

Matter - Tập 6 - Trang 3087-3098 - 2023
Xiege Huang1, Xiaobin Feng1, Qi An2, Ben Huang3,4, Xiaolian Zhang1, Zhongtao Lu1, Guodong Li1,3, Pengcheng Zhai1,3, Bo Duan1, G. Jeffrey Snyder5, William A. Goddard6, Qingjie Zhang3
1Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
2Department of Chemical and Materials Engineering, University of Nevada‐Reno, Reno, NV, 89557, USA
3State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
4Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
5Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
6Materials and Process Simulation Center, California Institute of Technology, Pasadena, Pasadena, CA 91125, USA

Tài liệu tham khảo

Witting, 2019, The Thermoelectric Properties of Bismuth Telluride, Adv. Electron. Mater., 5, 1800904, 10.1002/aelm.201800904 Shi, 2020, Advanced thermoelectric design: From materials and structures to devices, Chem. Rev., 120, 7399, 10.1021/acs.chemrev.0c00026 Snyder, 2021, Distributed and localized cooling with thermoelectrics, Joule, 5, 748, 10.1016/j.joule.2021.02.011 Tian, 2019, Body heat powers future electronic skins, Joule, 3, 1399, 10.1016/j.joule.2019.03.011 He, 2017, Advances in thermoelectric materials research: Looking back and moving forward, Science, 357, eaak9997, 10.1126/science.aak9997 Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899 Zhu, 2017, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 1605884, 10.1002/adma.201605884 Snyder, 2020, Weighted Mobility, Adv. Mater., 32, e2001537, 10.1002/adma.202001537 Zhang, 2020, Electronic quality factor for thermoelectrics, Sci. Adv., 6, eabc0726, 10.1126/sciadv.abc0726 Moshwan, 2017, Eco-friendly SnTe thermoelectric materials: Progress and future challenges, Adv. Funct. Mater., 27, 1703278, 10.1002/adfm.201703278 Yin, 2018, High thermoelectric performance of In4Se3-based materials and the influencing factors, Acc. Chem. Res., 51, 240, 10.1021/acs.accounts.7b00480 Ji, 2013, Vacancy-suppressed lattice conductivity of high-ZT In4Se3-x, Phys. Rev. B, 87, 125111, 10.1103/PhysRevB.87.125111 Wang, 2016, High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening, Energy Environ. Sci., 9, 3436, 10.1039/C6EE02674E Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996 Wang, 2017, Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening, J. Mater. Chem., 5, 14165, 10.1039/C7TA03359A Zheng, 2019, Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity, Nano Energy, 59, 311, 10.1016/j.nanoen.2019.02.045 Pan, 2018, Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency, Adv. Mater., 30, e1802016, 10.1002/adma.201802016 Witting, 2020, Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3+x) through controlled porosity, Journal of Materiomics, 6, 532, 10.1016/j.jmat.2020.04.001 Zheng, 2015, Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials, Adv. Energy Mater., 5, 1401391, 10.1002/aenm.201401391 Ivanova, 2013, Thermoelectric and mechanical properties of the Bi0.5Sb1.5Te3 solid solution prepared by melt spinning, Inorg. Mater., 49, 120, 10.1134/S0020168513020106 Yu, 2017, Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering, Nano Energy, 37, 203, 10.1016/j.nanoen.2017.05.031 Su, 2021, The influence of stacking faults on mechanical behavior of advanced materials, Mater. Sci. Eng., 803, 140696, 10.1016/j.msea.2020.140696 Zhou, 2018, Routes for high-performance thermoelectric materials, Mater. Today, 21, 974, 10.1016/j.mattod.2018.03.039 Barako, 2012, Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module, J. Electron. Mater., 42, 372, 10.1007/s11664-012-2366-1 Bae, 2015, Power-generation characteristics after vibration and thermal stresses of thermoelectric unicouples with CoSb3/Ti/Mo(Cu) interfaces, J. Electron. Mater., 44, 2124, 10.1007/s11664-015-3694-8 Li, 2021, Fracture toughness of thermoelectric materials, Mater. Sci. Eng. R Rep., 144, 100607, 10.1016/j.mser.2021.100607 Li, 2017, Superstrengthening Bi2Te3 through nanotwinning, Phys. Rev. Lett., 119, 085501, 10.1103/PhysRevLett.119.085501 Cheng, 2014, Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3, Phys. Rev. B, 90, 085118, 10.1103/PhysRevB.90.085118 Huang, 2008, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride, Phys. Rev. B, 77, 125209, 10.1103/PhysRevB.77.125209 Huang, 2019, Capturing anharmonic and anisotropic natures in the thermotics and mechanics of Bi2Te3 thermoelectric material through an accurate and efficient potential, J. Phys. D Appl. Phys., 52, 425303, 10.1088/1361-6463/ab2f3a Tong, 2010, Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk, Comput. Mater. Sci., 48, 343, 10.1016/j.commatsci.2010.01.019 Huang, 2020, Synergetic evolution of sacrificial bonds and strain-induced defects facilitating large deformation of the Bi2Te3 Semiconductor, ACS Appl. Energy Mater., 3, 3042, 10.1021/acsaem.0c00149 Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166 Jin, 2019, Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold, Nat. Mater., 18, 62, 10.1038/s41563-018-0217-z Wan, 2012, Nanoscale stacking faults induced low thermal conductivity in thermoelectric layered metal sulfides, Appl. Phys. Lett., 100, 10.1063/1.3691887 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012 Slack, 1979, The Thermal Conductivity of Nonmetallic Crystals, 1, 10.1016/S0081-1947(08)60359-8 Ma, 2003, Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation, Nanotechnology, 14, 1208, 10.1088/0957-4484/14/11/009 Zhang, 2021, Hardening Ni3Al via complex stacking faults and twinning boundary, Comput. Mater. Sci., 188, 110201, 10.1016/j.commatsci.2020.110201 Huang, 2021, Effect of heterointerface on the indentation behavior of nano-laminated c-BN/diamond composites, Ceram. Int., 47, 28659, 10.1016/j.ceramint.2021.07.025 Song, 2012, The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg, Acta Phys. Sin., 61, 226201, 10.7498/aps.61.226201 An, 2012, Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading, Chin. Phys. B, 21, 106202, 10.1088/1674-1056/21/10/106202 Hirel, 2015, Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun., 197, 212, 10.1016/j.cpc.2015.07.012 Song, 2012, Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg, J. Appl. Phys., 112, 054322, 10.1063/1.4752024 Tran, 2019, Dislocation interaction and fracture of Cu/Ta bilayer interfaces, Phys. Scripta, 94, 095402, 10.1088/1402-4896/ab176a Su, 2019, Phase transformation induced plasticity in high-strength hexagonal close packed Co with stacking faults, Scripta Mater., 173, 32, 10.1016/j.scriptamat.2019.07.030 Chen, 2022, Formation of high-density stacking faults in ceramic films induced by Ti transition layer, Scripta Mater., 211, 114496, 10.1016/j.scriptamat.2021.114496 Plimpton, 2012, Computational aspects of many-body potentials, MRS Bull., 37, 513, 10.1557/mrs.2012.96 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Nakajima, 1963, The crystal structure of Bi2Te3-xSex, J. Phys. Chem. Solid., 24, 479, 10.1016/0022-3697(63)90207-5