Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3
Tài liệu tham khảo
Witting, 2019, The Thermoelectric Properties of Bismuth Telluride, Adv. Electron. Mater., 5, 1800904, 10.1002/aelm.201800904
Shi, 2020, Advanced thermoelectric design: From materials and structures to devices, Chem. Rev., 120, 7399, 10.1021/acs.chemrev.0c00026
Snyder, 2021, Distributed and localized cooling with thermoelectrics, Joule, 5, 748, 10.1016/j.joule.2021.02.011
Tian, 2019, Body heat powers future electronic skins, Joule, 3, 1399, 10.1016/j.joule.2019.03.011
He, 2017, Advances in thermoelectric materials research: Looking back and moving forward, Science, 357, eaak9997, 10.1126/science.aak9997
Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899
Zhu, 2017, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater., 29, 1605884, 10.1002/adma.201605884
Snyder, 2020, Weighted Mobility, Adv. Mater., 32, e2001537, 10.1002/adma.202001537
Zhang, 2020, Electronic quality factor for thermoelectrics, Sci. Adv., 6, eabc0726, 10.1126/sciadv.abc0726
Moshwan, 2017, Eco-friendly SnTe thermoelectric materials: Progress and future challenges, Adv. Funct. Mater., 27, 1703278, 10.1002/adfm.201703278
Yin, 2018, High thermoelectric performance of In4Se3-based materials and the influencing factors, Acc. Chem. Res., 51, 240, 10.1021/acs.accounts.7b00480
Ji, 2013, Vacancy-suppressed lattice conductivity of high-ZT In4Se3-x, Phys. Rev. B, 87, 125111, 10.1103/PhysRevB.87.125111
Wang, 2016, High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening, Energy Environ. Sci., 9, 3436, 10.1039/C6EE02674E
Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996
Wang, 2017, Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening, J. Mater. Chem., 5, 14165, 10.1039/C7TA03359A
Zheng, 2019, Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity, Nano Energy, 59, 311, 10.1016/j.nanoen.2019.02.045
Pan, 2018, Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency, Adv. Mater., 30, e1802016, 10.1002/adma.201802016
Witting, 2020, Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3+x) through controlled porosity, Journal of Materiomics, 6, 532, 10.1016/j.jmat.2020.04.001
Zheng, 2015, Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials, Adv. Energy Mater., 5, 1401391, 10.1002/aenm.201401391
Ivanova, 2013, Thermoelectric and mechanical properties of the Bi0.5Sb1.5Te3 solid solution prepared by melt spinning, Inorg. Mater., 49, 120, 10.1134/S0020168513020106
Yu, 2017, Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering, Nano Energy, 37, 203, 10.1016/j.nanoen.2017.05.031
Su, 2021, The influence of stacking faults on mechanical behavior of advanced materials, Mater. Sci. Eng., 803, 140696, 10.1016/j.msea.2020.140696
Zhou, 2018, Routes for high-performance thermoelectric materials, Mater. Today, 21, 974, 10.1016/j.mattod.2018.03.039
Barako, 2012, Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module, J. Electron. Mater., 42, 372, 10.1007/s11664-012-2366-1
Bae, 2015, Power-generation characteristics after vibration and thermal stresses of thermoelectric unicouples with CoSb3/Ti/Mo(Cu) interfaces, J. Electron. Mater., 44, 2124, 10.1007/s11664-015-3694-8
Li, 2021, Fracture toughness of thermoelectric materials, Mater. Sci. Eng. R Rep., 144, 100607, 10.1016/j.mser.2021.100607
Li, 2017, Superstrengthening Bi2Te3 through nanotwinning, Phys. Rev. Lett., 119, 085501, 10.1103/PhysRevLett.119.085501
Cheng, 2014, Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3, Phys. Rev. B, 90, 085118, 10.1103/PhysRevB.90.085118
Huang, 2008, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride, Phys. Rev. B, 77, 125209, 10.1103/PhysRevB.77.125209
Huang, 2019, Capturing anharmonic and anisotropic natures in the thermotics and mechanics of Bi2Te3 thermoelectric material through an accurate and efficient potential, J. Phys. D Appl. Phys., 52, 425303, 10.1088/1361-6463/ab2f3a
Tong, 2010, Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk, Comput. Mater. Sci., 48, 343, 10.1016/j.commatsci.2010.01.019
Huang, 2020, Synergetic evolution of sacrificial bonds and strain-induced defects facilitating large deformation of the Bi2Te3 Semiconductor, ACS Appl. Energy Mater., 3, 3042, 10.1021/acsaem.0c00149
Kim, 2015, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166
Jin, 2019, Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold, Nat. Mater., 18, 62, 10.1038/s41563-018-0217-z
Wan, 2012, Nanoscale stacking faults induced low thermal conductivity in thermoelectric layered metal sulfides, Appl. Phys. Lett., 100, 10.1063/1.3691887
Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012
Slack, 1979, The Thermal Conductivity of Nonmetallic Crystals, 1, 10.1016/S0081-1947(08)60359-8
Ma, 2003, Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation, Nanotechnology, 14, 1208, 10.1088/0957-4484/14/11/009
Zhang, 2021, Hardening Ni3Al via complex stacking faults and twinning boundary, Comput. Mater. Sci., 188, 110201, 10.1016/j.commatsci.2020.110201
Huang, 2021, Effect of heterointerface on the indentation behavior of nano-laminated c-BN/diamond composites, Ceram. Int., 47, 28659, 10.1016/j.ceramint.2021.07.025
Song, 2012, The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg, Acta Phys. Sin., 61, 226201, 10.7498/aps.61.226201
An, 2012, Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading, Chin. Phys. B, 21, 106202, 10.1088/1674-1056/21/10/106202
Hirel, 2015, Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun., 197, 212, 10.1016/j.cpc.2015.07.012
Song, 2012, Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg, J. Appl. Phys., 112, 054322, 10.1063/1.4752024
Tran, 2019, Dislocation interaction and fracture of Cu/Ta bilayer interfaces, Phys. Scripta, 94, 095402, 10.1088/1402-4896/ab176a
Su, 2019, Phase transformation induced plasticity in high-strength hexagonal close packed Co with stacking faults, Scripta Mater., 173, 32, 10.1016/j.scriptamat.2019.07.030
Chen, 2022, Formation of high-density stacking faults in ceramic films induced by Ti transition layer, Scripta Mater., 211, 114496, 10.1016/j.scriptamat.2021.114496
Plimpton, 2012, Computational aspects of many-body potentials, MRS Bull., 37, 513, 10.1557/mrs.2012.96
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Nakajima, 1963, The crystal structure of Bi2Te3-xSex, J. Phys. Chem. Solid., 24, 479, 10.1016/0022-3697(63)90207-5