Stacking fault energy and fcc→hcp transformation driving force in Fe-Mn-C-Cr-Si high manganese steels and experimental investigation

Materials Research Express - Tập 8 Số 8 - Trang 086507 - 2021
Dong Lang1, Qiangguo Li2, Xuefei Huang1, Weigang Huang1
1College of Materials Science and Engineering, People's Republic of China
2College of Architecture and Environment, Sichuan University, No. 24 South section 1, Yihuan Road, Chengdu 610065, People's Republic of China

Tóm tắt

Abstract In order to improve the strength and work hardening capacity of high manganese steel, the effects of alloying elements on the stacking fault energy (SFE) and driving force of fcc→hcp transformation in Fe-Mn-C-Cr-Si high manganese steels were explored in detail. Based on the thermodynamic calculations, the Fe-0.6C-15Mn-(4,6)Cr-(0,3)Si (wt.%) steels were prepared to investigate the microstructure and mechanical properties. The calculated results show that the Cr reduces the SFE of Fe-C-Mn-Cr high Mn steels linearly and the reduction rate of SFE is greater as the C content increasing. With increasing the Si concentration, the SFE of Fe-C-Mn-Si steels decreases when the Mn content is higher than 18 wt.%. However, when carbon content is less than 1 wt.% and Mn content less than 18 wt.%, the SFE reaches to a maximum value and then declines with the increase of Si content. The combined effect of Cr and Si on the SFE of Fe-C-Mn-Si-Cr steels appears the similar behaviors to that of Si. Generally, the value of driving force, Δ G γ ε , of fcc→hcp transformation in Fe-Mn-C-2Cr-Si (wt.%) steels increases with the increase of C and Mn and decreases with the Si content increasing. However, for 0.6 wt.% C and 7 wt.% Mn steels, the value of Δ G γ ε first increases and then decreases with the increase of Si content. The results of tensile test indicated that the Fe-15Mn-0.6C-6Cr-3Si (wt.%) high manganese steel demonstrates a better combination of the ultimate strength of 987 MPa, yield strength of 470 MPa, fracture elongation of 41.5% and high work hardening capacity because of the ε-martensitic transformation caused by the great Δ G γ ε (large negative value) and low SFE under stress.

Từ khóa


Tài liệu tham khảo

Hadfield, 1888, Proceedings, 93, 61

Wen, 2014, Materials & Design, 55, 798, 10.1016/j.matdes.2013.09.057

Shterner, 2016, Materials Science and Engineering: A, 669, 437, 10.1016/j.msea.2016.05.104

Chen, 2017, Materials Science and Engineering: A, 679, 95, 10.1016/j.msea.2016.09.106

Chowdhury, 2017, Materials Science and Engineering: R: Reports, 122, 1, 10.1016/j.mser.2017.09.002

Lindroos, 2015, Tribology Letters, 57, 24, 10.1007/s11249-015-0477-6

Tressia, 2017, Wear, 376-377, 63, 10.1016/j.wear.2017.01.073

Garmeh, 2020, Engineering Failure Analysis, 109, 10.1016/j.engfailanal.2019.104230

Mishra, 2021, Materials Today: Proceedings, 44, 2517, 10.1016/j.matpr.2020.12.602

Varela, 2021, Engineering Failure Analysis, 122, 10.1016/j.engfailanal.2021.105295

Guo, 2013, Wear, 305, 267, 10.1016/j.wear.2013.01.019

Zambrano, 2020, Engineering Failure Analysis, 115, 10.1016/j.engfailanal.2020.104621

DASTUR, 1981, Metallurgical Transactions A, 12, 749, 10.1007/BF02648339

Iglesias, 2009, Materials Characterization, 60, 971, 10.1016/j.matchar.2009.03.015

Abbasi, 2010, Wear, 268, 202, 10.1016/j.wear.2009.07.010

Hutchinson, 2006, Scripta Materialia, 55, 299, 10.1016/j.scriptamat.2006.05.002

Liu, 2016, Materials Science and Engineering: A, 674, 178, 10.1016/j.msea.2016.07.115

Liang, 2009, Acta Materialia, 57, 3978, 10.1016/j.actamat.2009.05.003

Koyama, 2011, Materials Science and Engineering: A, 528, 7310, 10.1016/j.msea.2011.06.011

Canadinc, 2005, Acta Materialia, 53, 1831, 10.1016/j.actamat.2004.12.033

Tomota, 1986, Metallurgical Transactions A, 17, 537, 10.1007/BF02643961

Allain, 2004, Materials Science and Engineering: A, 387-389, 158, 10.1016/j.msea.2004.01.059

Curtze, 2010, Acta Materialia, 58, 5129, 10.1016/j.actamat.2010.05.049

Jacob, 2020, Materials Today: Proceedings, 27, 2852, 10.1016/j.matpr.2020.01.296

Kim, 2016, Materials Science and Engineering: A, 676, 216, 10.1016/j.msea.2016.08.106

Galindo-Nava, 2017, Acta Materialia, 128, 120, 10.1016/j.actamat.2017.02.004

De Cooman, 2018, Acta Materialia, 142, 283, 10.1016/j.actamat.2017.06.046

Ferreira, 1998, Acta Materialia, 46, 4479, 10.1016/S1359-6454(98)00155-4

Byun, 2003, Acta Materialia, 51, 3063, 10.1016/S1359-6454(03)00117-4

Lee, 2000, Metallurgical And Materials Transactions A, 355, 10.1007/s11661-000-0271-3

Latanision, 1971, Metallurgical Transactions A, 2, 505, 10.1007/BF02663341

Rémy, 1978, Materials Science and Engineering, 36, 47, 10.1016/0025-5416(78)90194-5

Molnár, 2019, Materials Science and Engineering: A, 759, 490, 10.1016/j.msea.2019.05.079

Hamza, 2018, Procedia Manufacturing, 22, 129, 10.1016/j.promfg.2018.03.020

Lee, 2014, Scripta Materialia, 23, 10.1016/j.scriptamat.2014.08.004

Bracke, 2007, Metallurgical and Materials Transactions A, 38, 520, 10.1007/s11661-006-9084-3

Saeed-Akbari, 2009, Metallurgical and Materials Transactions A, 40, 3076, 10.1007/s11661-009-0050-8

Tae-Ho, 2012, Metallurgical and Materials Transactions A, 43, 4455, 10.1007/s11661-012-1423-y

Xiong, 2014, Materials Science and Engineering: A, 598, 376, 10.1016/j.msea.2014.01.046

Lee, 2018, Journal of Alloys and Compounds, 749, 776, 10.1016/j.jallcom.2018.03.296

Lee, 2002, Journal Of Materials Science Letters, 21, 1149, 10.1023/A:1016543729437

Stoltz, 1980, Metallurgical Transactions A, 11, 1033, 10.1007/BF02654717

Yakubtsov, 1999, Acta Materialia, 47, 1271, 10.1016/S1359-6454(98)00419-4

Dumay, 2008, Materials Science and Engineering: A, 483-484, 184, 10.1016/j.msea.2006.12.170

Jin, 2012, Acta Materialia, 60, 1680, 10.1016/j.actamat.2011.12.004

Mihyun, 2012, Materials Letters, 76, 93, 10.1016/j.matlet.2012.02.075

Tian, 2009, Materials Science and Engineering: A, 516, 73, 10.1016/j.msea.2009.02.031

Wu, 2016, Materials Science and Technology, 33, 1019, 10.1080/02670836.2016.1262318

Kang, 2012, Materials Science and Engineering: A, 558, 623, 10.1016/j.msea.2012.08.063

Olson, 1976, Metallurgical Transactions A, 7, 1897

Curtze, 2011, Acta Materialia, 59, 1068, 10.1016/j.actamat.2010.10.037

Ishida, 1976, Physica Status Solidi A, 36, 717, 10.1002/pssa.2210360233

Tian, 2009, Materials Science and Engineering: A, 516, 78, 10.1016/j.msea.2009.02.032

Inden, 1981, Physica B & C, 103, 82, 10.1016/0378-4363(81)91004-4

Hillert, 1978, Calphad-Computer Coupling Of Phase Diagrams And Thermochemistry, 2, 227, 10.1016/0364-5916(78)90011-1

Dinsdale, 1991, Computer Coupling of Phase Diagrams and Thermochemistry, 15, 317, 10.1016/0364-5916(91)90030-N

Ribamar, 2020, Metallurgical and Materials Transactions A, 51, 4812, 10.1007/s11661-020-05877-z

Zhang, 2002, Materials Science and Engineering: A, 334, 19, 10.1016/S0921-5093(01)01781-6

Li, 2018, Materials & Design, 142, 190, 10.1016/j.matdes.2018.01.026