Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khung hữu cơ kim loại ổn định với hiệu suất xúc tác cao trong phản ứng cycloaddition của CO2 với aziridin
Tóm tắt
Dựa trên các ligand hỗn hợp XN (4′-(4-pyridin)4,2′:2′,4″-terpyridine) và acid isophthalic (IPA), ba khung hữu cơ kim loại (MOFs) mới {[M2(XN)2(IPA)2]•2H2O}n (M=Co (1), Mn (2), Ni (3)) đã được lắp ráp và phân tích cấu trúc, thể hiện các cấu trúc chuỗi cột 3D đặc trưng. Các phép đo độ ổn định chứng minh rằng các hợp chất này có độ ổn định nhiệt cao và có thể chịu được các dung môi hữu cơ khác nhau cũng như nhiều dung dịch axit/bazơ trong khoảng pH từ 1 đến 14. Quan trọng là, các hợp chất 1–3 có thể đóng vai trò như các chất xúc tác có hiệu suất cao cho quá trình chuyển đổi CO2 và aziridin để tạo ra các oxazolidinone có giá trị cao dưới các điều kiện nhẹ, thể hiện khả năng tuần hoàn xuất sắc ít nhất là năm lần.
Từ khóa
#khung hữu cơ kim loại #xúc tác #CO2 #aziridin #oxazolidinone #độ ổn định nhiệtTài liệu tham khảo
Zhang XB, Xu J. Appl Energy, 2018, 211: 1021–1029
Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. Int J Greenh Gas Control, 2008, 2: 9–20
Pervaiz M, Sain MM. Resour C Recycl, 2003, 39: 325–340
Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S. Angew Chem Int Ed, 2014, 53: 2615–2619
Beyzavi MH, Klet RC, Tussupbayev S, Borycz J, Vermeulen NA, Cramer CJ, Stoddart JF, Hupp JT, Farha OK. J Am Chem Soc, 2014, 136: 15861–15864
Kang XM, Wang WM, Yao LH, Ren HX, Zhao B. Dalton Trans, 2018, 47: 6986–6994
Tang L, Zhang S, Wu Q, Wang X, Wu H, Jiang Z. J Mater Chem A, 2018, 6: 2964–2973
Correa A, León T, Martin R. J Am Chem Soc, 2014, 136: 1062–1069
Xu H, Liu XF, Cao CS, Zhao B, Cheng P, He LN. Adv Sci, 2016, 3: 1600048
Cao CS, Shi Y, Xu H, Zhao B. Dalton Trans, 2018, 47: 4545–4553
Wang X, Gao WY, Niu Z, Wojtas L, Perman JA, Chen YS, Li Z, Aguila B, Ma S. Chem Commun, 2018, 54: 1170–1173
Guo X, Zhou Z, Chen C, Bai J, He C, Duan C. ACS Appl Mater Interfaces, 2016, 8: 31746–31756
Zhang G, Yang H, Fei H. ACS Catal, 2018, 8: 2519–2525
Yang Q, Xu Q, Yu SH, Jiang HL. Angew Chem Int Ed, 2016, 55: 3685–3689
Zhao D, Liu XH, Zhu C, Kang YS, Wang P, Shi Z, Lu Y, Sun WY. ChemCatChem, 2017, 9: 4598–4606
Jiang HL, Akita T, Ishida T, Haruta M, Xu Q. J Am Chem Soc, 2011, 133: 1304–1306
Mukhtar TA, Wright GD. Chem Rev, 2005, 105: 529–542
Aurelio L, Brownlee RTC, Hughes AB. Chem Rev, 2004, 104: 5823–5846
Barbachyn MR, Ford CW. Angew Chem Int Ed, 2003, 42: 2010–2023
Jiang HF, Ye JW, Qi CR, Huang LB. Tetrahedron Lett, 2010, 51: 928–932
Tascedda P, Duñach E. Chem Commun, 2000, 449–450
Sudo A, Morioka Y, Sanda F, Endo T. Tetrahedron Lett, 2004, 45: 1363–1365
Kang XM, Cheng RR, Xu H, Wang WM, Zhao B. Chem Eur J, 2017, 23: 13289–13293
Zhai B, Xu H, Li ZY, Cao CS, Zhao B. Sci China Chem, 2017, 60: 1328–1333
Hu HC, Hu HS, Zhao B, Cui P, Cheng P, Li J. Angew Chem Int Ed, 2015, 54: 11681–11685
Wang WM, Wu ZL, Zhang YX, Wei HY, Gao HL, Cui JZ. Inorg Chem Front, 2018, 5: 2346–2354
Ren J, Liu Y, Chen Z, Xiong G, Zhao B. Sci China Chem, 2012, 55: 1073–1078
Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P. Angew Chem Int Ed, 2016, 55: 4938–4942
Shi PF, Xiong G, Zhang ZY, Zhao B. Sci Sin Chim, 2013, 43: 1262
Cui P, Ma YG, Li HH, Zhao B, Li JR, Cheng P, Balbuena PB, Zhou HC. J Am Chem Soc, 2012, 134: 18892–18895
Shi PF, Zhao B, Xiong G, Hou YL, Cheng P. Chem Commun, 2012, 48: 8231–8233
Xu H, Cao CS, Zhao B. Chem Commun, 2015, 51: 10280–10283
Dong DP, Liu T, Kanegawa S, Kang S, Sato O, He C, Duan CY. Angew Chem Int Ed, 2012, 51: 5119–5123
Kang XM, Fan XY, Hao PY, Wang WM, Zhao B. Inorg Chem Front, 2019, 6: 271–277
Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S. Angew Chem, 2014, 126: 2653–2657
Jiang W, Yang J, Liu YY, Song SY, Ma JF. Chem Eur J, 2016, 22: 16991–16997
Ding LG, Yao BJ, Jiang WL, Li JT, Fu QJ, Li YA, Liu ZH, Ma JP, Dong YB. Inorg Chem, 2017, 56: 2337–2344
Liu XH, Ma JG, Niu Z, Yang GM, Cheng P. Angew Chem, 2015, 127: 1002–1005
Xiong G, Yu B, Dong J, Shi Y, Zhao B, He LN. Chem Commun, 2017, 53: 6013–6016
Sheldrick GM. Acta Cryst, 2008, 64: 112–122
Sheldrick GM. Acta Crystlogr A Found Adv, 2015, 71: 3–8
Spek AL. Acta Crystlogr C Struct Chem, 2015, 71: 9–18
Bernini MC, Romero de Paz J, Snejko N, Sáez-Puche R, Gutierrez- Puebla E, Monge MÁ. Inorg Chem, 2014, 53: 12885–12895
Wang HY, Wu Y, Leong CF, D’Alessandro DM, Zuo JL. Inorg Chem, 2015, 54: 10766–10775
An DL, Chen YQ, Tian Y. Z Anorg Allg Chem, 2014, 640: 1776–1781
Chen YQ, Li GR, Qu YK, Zhang YH, He KH, Gao Q, Bu XH. Cryst Growth Des, 2013, 13: 901–907
Fu Z, Chen Y, Zhang J, Liao S. J Mater Chem, 2011, 21: 7895–7897
TOPOS software is available for download at https://doi.org/www.topos.ssu.samara.ru
Zhang JY, Shi JX, Cui PH, Yao ZJ, Deng W. CrystEngComm, 2017, 19: 5038–5047