Stable high efficiency two-dimensional perovskite solar cells via cesium doping

Energy and Environmental Science - Tập 10 Số 10 - Trang 2095-2102
Xu Zhang1,2,3,4,5,6, Xiaodong Ren4,7,8,9,10, Bin Liu4,7,8,9,10, Rahim Munir11,12,13,14, Xuejie Zhu4,7,8,9,10, Dong Yang4,7,8,9,10, Jianbo Li4,7,8,9,10, Yucheng Liu4,7,8,9,10, Detlef‐M. Smilgies15,16,17, Ruipeng Li15,16,17, Zhou Yang4,7,8,9,10, Tianqi Niu4,7,8,9,10, Kai Wang18,1,2,3,6, Aram Amassian11,12,13,14, Kui Zhao4,7,8,9,10, Shengzhong Liu18,1,2,3,4,6
1Dalian
2Dalian Institute of Chemical Physics
3Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
4Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
5University of Chinese Academy of Sciences, Beijing, China
6iChEM
7National Ministry of Education
8School of Materials Science and Engineering
9Shaanxi Engineering Lab for Advanced Energy Technology
10Shaanxi Key Laboratory for Advanced Energy Devices
11KAUST Solar Center (KSC) and Physical Science and Engineering Division (PSE)
12King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) and Physical Science and Engineering Division (PSE), Thuwal, 23955-6900 Saudi Arabia
13Saudi Arabia
14Thuwal 23955-6900
15Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
16(Cornell University
17Ithaca
18Chinese Academy of sciences

Tóm tắt

Cs+doping into 2D (BA)2(MA)3Pb4I13perovskites boosts power conversion efficiency (PCE) to 13.7% and yields superior humidity and thermal stability.

Từ khóa


Tài liệu tham khảo

Burschka, 2013, Nature, 499, 316, 10.1038/nature12340

Kim, 2012, Sci. Rep., 2, 591, 10.1038/srep00591

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Mitzi, 1999, Prog. Inorg. Chem., 48, 1

Baikie, 2013, J. Mater. Chem. A, 1, 5628, 10.1039/c3ta10518k

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies Chart, http://www.nrel.gov/pv/assets/images/efficiency-chart.png, accessed, 2017

Conings, 2015, Adv. Energy Mater., 5, 1500477, 10.1002/aenm.201500477

Buin, 2014, Nano Lett., 14, 6281, 10.1021/nl502612m

Berhe, 2016, Energy Environ. Sci., 9, 323, 10.1039/C5EE02733K

Bi, 2016, Adv. Mater., 28, 2910, 10.1002/adma.201505255

Chen, 2015, Science, 350, 944, 10.1126/science.aad1015

Tsai, 2016, Nature, 536, 312, 10.1038/nature18306

Stoumpos, 2016, Chem. Mater., 28, 2852, 10.1021/acs.chemmater.6b00847

Chen, 2017, Adv. Mater., 29, 1603157, 10.1002/adma.201603157

Smith, 2014, Angew. Chem., Int. Ed., 53, 11232, 10.1002/anie.201406466

Quan, 2016, J. Am. Chem. Soc., 138, 2649, 10.1021/jacs.5b11740

Era, 1994, Appl. Phys. Lett., 65, 676, 10.1063/1.112265

Zhang, 2017, Adv. Funct. Mater., 27, 1603568, 10.1002/adfm.201603568

Lermer, 2016, Chem. Mater., 28, 6560, 10.1021/acs.chemmater.6b02151

Cao, 2015, J. Am. Chem. Soc., 137, 7843, 10.1021/jacs.5b03796

Blancon, 2017, Science, 355, 1288, 10.1126/science.aal4211

Munir, 2017, Adv. Mater., 29, 11604113, 10.1002/adma.201604113

Nenon, 2016, Energy Environ. Sci., 9, 2072, 10.1039/C6EE01047D

Lee, 2016, Acc. Chem. Res., 49, 311, 10.1021/acs.accounts.5b00440

Rehman, 2017, Energy Environ. Sci., 10, 361, 10.1039/C6EE03014A

Yi, 2016, Energy Environ. Sci., 9, 656, 10.1039/C5EE03255E

Choi, 2014, Nano Energy, 7, 80, 10.1016/j.nanoen.2014.04.017

Amat, 2014, Nano Lett., 14, 3608, 10.1021/nl5012992

Kieslich, 2014, Chem. Sci., 5, 4712, 10.1039/C4SC02211D

Kieslich, 2015, Chem. Sci., 6, 3430, 10.1039/C5SC00961H

Saparov, 2016, Chem. Rev., 116, 4558, 10.1021/acs.chemrev.5b00715

Liu, 2016, Appl. Phys. Lett., 108, 181604, 10.1063/1.4948680

Ishihara, 1989, Solid State Commun., 69, 933, 10.1016/0038-1098(89)90935-6

Hong, 1992, Phys. Rev. B: Condens. Matter Mater. Phys., 45, 6961, 10.1103/PhysRevB.45.6961

Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557

Bube, 1962, J. Appl. Phys., 33, 1733, 10.1063/1.1728818

Brivio, 2013, APL Mater., 1, 042111, 10.1063/1.4824147

Shi, 2015, Science, 347, 519, 10.1126/science.aaa2725

Liu, 2015, Adv. Mater., 27, 5176, 10.1002/adma.201502597

Liao, 2017, J. Mater. Chem. A, 5, 2066, 10.1039/C6TA09582H

McGehee, 2014, Nat. Mater., 13, 845, 10.1038/nmat4050

Kim, 2014, J. Phys. Chem. Lett., 5, 2927, 10.1021/jz501392m

Zhao, 2015, J. Mater. Chem. A, 3, 20554, 10.1039/C5TA04028K

Yang, 2016, Energy Environ. Sci., 9, 3071, 10.1039/C6EE02139E

Yang, 2015, Energy Environ. Sci., 8, 3208, 10.1039/C5EE02155C

Peng, 2017, Nano Lett., 17, 4759, 10.1021/acs.nanolett.7b01475

Lin, 2017, ACS Energy Lett., 2, 1571, 10.1021/acsenergylett.7b00442

Snaith, 2014, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x