Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids

Springer Science and Business Media LLC - Tập 12 - Trang 247-263 - 2008
Nils Thürey1, Ulrich Rüde1
1Computer Science 10 - System Simulation (LSS), University of Erlangen-Nuremberg, Erlangen, Germany

Tóm tắt

In this paper we will present an algorithm to perform free surface flow simulations with the lattice Boltzmann method on adaptive grids. This reduces the required computational time by more than a factor of three for simulations with large volumes of fluid. To achieve this, the simulation of large fluid regions is performed with coarser grid resolutions. We have developed a set of rules to dynamically adapt the coarse regions to the movement of the free surface, while ensuring the consistency of all grids. Furthermore, the free surface treatment is combined with a Smagorinsky turbulence model and a technique for adaptive time steps to ensure stable simulations. The method is validated by comparing the position of the free surface with an uncoarsened simulation. It yields speedup factors of up to 3.85 for a simulation with a resolution of 4803 cells and three coarser grid levels, and thus enables efficient and stable simulations of free surface flows, e.g. for highly detailed physically based animations of fluids.

Tài liệu tham khảo

Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG: A flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997) Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–525 (1954) Bouzidi, M., Firadouss, M., Lallemand, P.: Momentum transfer of a lattice-boltzmann fluid with boundaries. Phys. Fluids 13, 3452–3459 (2002) Buwa, V.V., Deo, D.S., Ranade, V.V.: Eulerian–Lagrangian simulations of unsteady gas–liquid flows in bubble Columns. Int. J. Multiphase Flow (2005) Causin, P., Miglio, E., Saleri, F.: Algebraic factorizations for 3D non-hydrostatic free surface flows. Comput. Vis. Sci. 5(2), 85–94 (2002) Chu, N.S.H., Tai, C.L.: MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. 24(3), 504–511 (2005) Crouse, B., Krafcyzk, M., Tölke, J., Rank, E.: A LB-based approach for adaptive flow simulations. Int. J. Modern Phys. B 17, 109–112 (2003) Filippova, O., Hänel, D.: Grid refinement for lattice-BGK models. J. Comp. Phys. 147, 219–228 (1998) Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivert, J.P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1, 649–707 (1987) Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-Boltzmann Lighting. In: Proceedings of Eurographics Symposium on Rendering 2004, pp. 355–362 (2004) Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows. Comput. Fluids 35, 8–9 (2006) Ginzburg, I., d’Humières, D.: Multi-reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68:066614-1-30 (2003) Ginzburg, I., Steiner, K.: Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 185/1 (2003) Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43 (1991) He, X., Luo, L.S.: A priori derivation of lattice Boltzmann equation. Phys. Rev. E 55, R6333–R6336 (1997) He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equations. J. Stat. Phys. 88, 927–944 (1997) Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39, 201–225 (1981) Hou, S., Sterling, J.D., Chen, S., Doolen, G.: A lattice Boltzmann subgrid model for high Reynolds number flow. Fields Inst. Commun. 6, 151–166 (1996) Inamuro, T., Ogata, T., Tajima, S., Konishi, N.: A lattice boltzmann method for incompressible two-phase flows with large density differences. J. Comp. Phys. 198, 628–644 (2004) Körner, C., Pohl, T., Rüde, U., Thürey, N., Zeiser, T.: Parallel lattice Boltzmann methods for CFD applications. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, LNCSE, vol. 51, pp. 439–465. Springer, Heidelberg (2005) Körner, C., Singer, R.: Numerical Simulation of Foam Formation and Evolution with Modified Cellular Automata. Metal Foams and Porous Metal Structures, pp. 91–96 (1999) Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121(1-2), 179–196 (2005) Körner, C., Thies, M., Singer, R.F.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. (2002) Krafczyk, M.: Gitter–Boltzmann-Methoden, von der Theorie zur Anwendung. Habilitation (2001) Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546–6562 (2000) Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23(3), 457–462 (2004) Krafczyk, M., Tölke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods. Comput. Struct. 79 (2001) Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comp. Phys. 155, 307–330 (1999) Monaghan, J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Phys. 30, 543–574 (1992) Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 154–159 (2003) Pohl, T., Kowarschik, M., Wilke, J., Iglberger, K., Rüde, U.: Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes in 2D and 3D. Technical Report 3–8, Germany (2003) Pohl, T., Thürey, N., Deserno, F., Rüde, U., Lammers, P., Wellein, G., Zeiser, T.: Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In: Proceedings of supercomputing conference 2004 (2004) Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992) Rohde, M., Kandhai, D., Derksen, J.J., van den Akker, H.E.A.: A generic mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int. J. Num. Methods Fluids 51, 439 (2006) Shan, X., Chen, H.: Simulation of non-ideal gases and liquid–gas phase transitiions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941–2948 (1994) Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963) Stam, J.: Stable Fluids. In: Proceedings of ACM SIGGRAPH, pp. 121–128 (1999) Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001) Sussman, M.: A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187/1 (2003) Swift, M.R., Orlandi, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996) Thuerey, N.: A lattice Boltzmann method for single-phase free surface flows in 3D. Masters Thesis, Department of Computer Science 10, System-Simulation, University of Erlangen-Nuremberg (2003) Thürey, N., Rüde, U.: Webpage: stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. http://www10.informatik.uni-erlangen.de/~sinithue/sfsflbmacg/ Thürey, N., Körner, C., Rüde, U.: Interactive free surface fluids with the lattice Boltzmann method, Technical Report 05–4. Technical Report, Department of Computer Science 10, System Simulation (2005) Thürey, N., Pohl, T., Rüde, U., Oechsner, M., Körner, C.: Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Comput. Fluids 35(8–9), 934–939 (2006) Tölke, J., Freudiger, S., Krafcyzk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 17, 109–112 (2003) Tölke, J., Krafcyzk, M., Schulz, M., Rank, E.: Lattice Boltzmann simulations of binary fluid flow through porous media. Philos. Trans. R. Soc. Lond. A 360, 535–545 (2002) Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001) Veldhuizen, B., Langlotz, J., et al.: Blender open source 3D graphics creation (2005) http://www.blender3d.org Verberg, R., Ladd, A.J.C.: Accuracy and stability of a lattice-boltzmann model with subgrid scale boundary conditions. Phys. Rev. E 65(016701-1-6) (2001) Wang, C., Wang, Z., Xia, T., Peng, Q.: Real-time snowing simulation. The Visual Computer, pp. 315–323 (2006) Wei, X., Li, W., M"uller, K., Kaufman, A.E.: The lattice-Boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 10(2), 164–176 (2004) Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., Kaufman, A.: Natural phenomena: blowing in the wind. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 75–85 (2003) Wittum, G.: Multi-grid methods for Stokes and Navier–Stokes equations with transforming smoothers: algorithms and numerical results. Numer. Math. 54, 543–563 (1989) Yu, D., Mei, R., Luo, L.S., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerospace Sci. 39(5) (2003) Yu, D., Mei, R., Shyy, W.: A multi-block lattice Boltzmann method for viscous fluid flows. Int. J. Numer. Methods Fluids 39 (2002) Yu, H., Girimaji, S., Luo, L.S.: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Phys. Rev. E 71 (2005) Yu, H., Luo, L.S., Girimaji, S.: LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids 25, 957–965 (2006)