Stable constant mean curvature tori and the isoperimetric problem in three space forms

Commentarii Mathematici Helvetici - Tập 67 - Trang 293-305 - 1992
Manuel Ritoré1,2, Antonio Ros1,2
1Departamento de Matemáticas, Universidad de Extremadura, Badajoz, Spain
2Departamento de Geometría y Topología, Universidad de Granada, Granada, Spain

Tài liệu tham khảo

F. J. Almgren, “Existence and regularity almost everywhere of solutions to elliptic variational problems with constrains”, Mem A.M.S.,4, 165, 1976. J. L. Barbosa andM. Do Carmo, “Stability of hypersurfaces with constant mean curvature”, Math. Z.,185, 339–353, 1984. J. L. Barbosa andM. Do Carmo andJ. Eschenburg “Stability of hypersurfaces with constant mean curvature in Riemannian manifolds”, Math. Z.197, 123–138, 1988. M. Do Carmo, “Hypersurfaces with constant mean curvature”, Proc. 3rd Symp. Diff. Geom., Peñíscola, Lecture Notes in Mathematics 1410, 128–144, 1988. B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973. S. Y. Cheng, “Eigenfunctions and nodal sets”, Comm. Math. Helv.,51, 43–55, 1976. L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N.J., 1925. A. El Soufi andS. Ilias, “Majoration de la seconde valeur propre d'un operateur de Schrödinger sur una variete compacte et applications”, (to appear in Jour. of Func. Anal.). D. Fischer-Colbrie, “On complete minimal surfaces with finite Morse index in three-manifolds”, Invent. Math.,82, 121–132, 1985. T. Frankel, “On the fundamental group of a compact minimal submanifold”, Ann. of Math.,83, 68–73, 1966. K. Frensel, “Stable complete surfaces with constant mean curvature”, Anais Acad. Bras. Cien.,60, 115–117, 1988. P. Griffiths andJ. Harris, Principles of Algebraic Geometry, Pure and Applied Math., Wiley-Interscience series, 1978. E. Heintze, “Extrinsic upper bounds for λ1”, Math. Ann.280, 389–402, 1988. H. Hopf, Differential Geometry in the Large, Lecture Notes on Mathematics 1000, 2nd edition, Springer-Verlag, 1983. H. Karcher, “The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions”, Manusc. Math.,64, 291–357, 1989. N. J. Korevaar, R. Kusner andB. Solomon, “The structure of complete embedded surfaces with constant mean curvature”, Jour. of Diff. Geom.,30, 465–503, 1989. R. Kusner, “Conformal geometry and complete minimal surfaces”, Bull. A.M.S.,17, 291–295. 1987. H. B. Lawson, “Complete minimal surfaces in S 3”, Ann. of Math.,92, 335–374, 1970. P. Li andS. T. Yau, “A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces”, Invent. Math.,69, 269–291, 1982. F. J. López andA. Ros, “Complete minimal surfaces with index one and stable constant mean curvature surfaces”, Comm. Math. Helv.,64, 34–43, 1989. S. Montiel andA. Ros, “Schrödinger operators associated to a holomorphic map”, Proceedings Conference on Global Analysis and Global Differential Geometry, Berlin, 1990 (to appear). B. Palmer, PhD Thesis, Standford, 1986. R. Pedrosa, “On the uniqueness of isoperimetric regions in cylindrical spaces”, PhD Thesis, Berkeley, 1988. M. Ross, “Stability properties of complete two-dimensional minimal surfaces in Euclidean space”, PhD Thesis, Berkeley, 1989. A. Da Silveira, “Stability of complete noncompact surfaces with constant mean curvature”, Math. Ann.,277, 629–638, 1987. E. Schmidt, “Breweis der isoperimetrischen Eigenschaft der Kugel in hyperbolischen und sphärischen Raum jeder Dimensionszahl”, Math. Z.,49, 1–109, 1943. J. E. Taylor, “The structure of singularities in solutions to ellipsoidal problems with constrains in ℝ3”, Ann. of Math.,103, 541–546, 1976. S. T. Yau, “Nonlinear analysis in geometry”, L'enseignement Math.,33, 109–158, 1987.