Stable Triazenes Derived from 2‐Alkylaminonaphthalenes and 5‐Nitrobenzo[c]‐1,2‐thiazole‐3‐diazonium Hydrogensulfate

European Journal of Organic Chemistry - Tập 2008 Số 19 - Trang 3272-3278 - 2008
Josef Přikryl1,2, V. Macháček3, Petr Jansa4, M. Svobodova3, Aleš Růžička5, Petr Nachtigall6, Michal Černý2
1Deceased
2Institute of Polymeric Materials, Faculty of Chemical Technology, University of Pardubice
3Department of Organic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. legií 565, 53210 Pardubice, Czech Republic,
4Gilead Sciences & IOCB Research Centre, Centre for New Antivirals and Antineoplastics, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
5Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice
6Center for Complex Molecular Systems and Biomolecules, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic

Tóm tắt

AbstractA calculation using the DFT method confirmed that the extraordinary stability of the triazenes formed by an azo coupling reaction of 5‐nitrobenzo[c]‐1,2‐thiazole‐3‐diazonium with primary or secondary aromatic amines is caused by the fact that these substances are protonated at the heterocyclic nitrogen atom and not at the nitrogen atom of the triazene grouping –N=N–N(R)Ar. Stable triazenes are also formed by reaction of 5‐nitrobenzo[c]‐1,2‐thiazole‐3‐diazonium with 2‐alkylaminonaphthalenes. In the cases of the azo coupling reaction with 2‐methylamino‐ and 2‐ethylaminonaphthalene, the content of triazenes is almost 50 % in the product mixture with the isomeric azo compounds. The structures of the triazenes were confirmed by X‐ray analysis.(© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Từ khóa


Tài liệu tham khảo

10.1002/ejoc.200300370

10.1107/S0108270103029433

10.1016/j.dyepig.2005.10.003

10.1135/cccc19770702

Saunders K. H., 1985, Aromatic Diazo Compounds

Zollinger H., 1994, Diazo Chemistry I, Aromatic and Heteroaromatic Compounds, 10.1002/3527601724

10.1002/9780470771549

Bagal I. L., 1986, Zhur. Obsch. Khim., 56, 489

Abezgauz F. I., 1965, Zhur. Vsesoyuz. Chim. Obszcz. Im. Mendeleeva, 10, 113

10.1016/S0143-7208(01)00034-1

10.1103/PhysRevB.37.785

A. D.Becke J. Chem. Phys.1993;98 5648–5652.

10.1063/1.467146

10.1016/S0009-2614(98)00106-7

10.1021/cr00088a005

M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman J. A. Montgomery Jr T. Vreven K. N. Kudin J. C. Burant J. M. Millam S. S. Iyengar J. Tomasi V. Barone B. Mennucci M. Cossi G. Scalmani N. Rega G. A. Petersson H. Nakatsuji M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai M. Klene X. Li J. E. Knox H. P. Hratchian J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski P. Y. Ayala K. Morokuma G. A. Voth P. Salvador J. J. Dannenberg V. G. Zakrzewski S. Dapprich A. D. Daniels M. C. Strain O. Farkas D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. V. Ortiz Q. Cui A. G. Baboul S. Clifford J. Cioslowski B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara M. Challacombe P. M. W. Gill B. Johnson W. Chen M. W. Wong C. Gonzalez J. A. Pople GAUSSIAN 03 revision C.02 Gaussian Inc. Wallingford CT 2004..

10.1135/cccc19833104

Allen F. H., 1987, J. Chem. Soc. Perkin Trans. 2

10.1107/S0108768191004524

10.1107/S0108270198010415

10.1107/S0108270102001683

10.1023/A:1014363720456

10.1107/S0108768191013599

10.1107/S0108270195008419

10.1107/S010827018800647X

10.1016/S0076-6879(97)76066-X

Ahmed F. R., 1970, Crystallographic Computing

10.1107/S0021889892010331

G. M. Sheldrick SHELXL‐97 University of Göttingen Göttingen 1997.