Stabilizing zinc anode via a chelation and desolvation electrolyte additive

Advanced Powder Materials - Tập 1 - Trang 100007 - 2022
Jin Cao1,2, Dongdong Zhang1,2, Rungroj Chanajaree2, Yilei Yue3, Zhiyuan Zeng4, Xinyu Zhang3, Jiaqian Qin2,5
1International Graduate Program of Nanoscience & Technology, Chulalongkorn University, Bangkok 10330, Thailand
2Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
3State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
4Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
5Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand

Tài liệu tham khảo

Jia, 2020, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev., 120, 7795, 10.1021/acs.chemrev.9b00628 Zhang, 2020, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49, 4203, 10.1039/C9CS00349E Cao, 2021, Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries, Nano Energy, 84, 105876, 10.1016/j.nanoen.2021.105876 Zhang, 2021, Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery, Adv. Funct. Mater., 31, 2009412, 10.1002/adfm.202009412 Wan, 2019, Design strategies for vanadium-based aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 58, 16358, 10.1002/anie.201903941 Chen, 2021, Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works, Energy Storage Mater, 35, 679, 10.1016/j.ensm.2020.12.001 Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J Li, 2021, Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed., 60, 6600, 10.1002/anie.202013993 Qi, 2021, Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth, Adv. Funct. Mater., 31, 2009013, 10.1002/adfm.202009013 Zhang, 2020, Interfacial engineering of polyhedral carbon@ hollowed carbon@SiO2 nanobox with tunable structure for enhanced lithium ion battery, Appl. Surf. Sci., 148039 Cao, 2020, A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode, J. Mater. Chem., 8, 9331, 10.1039/D0TA02486D Abdulla, 2021, Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries, ACS Appl. Energy Mater., 4, 4602, 10.1021/acsaem.1c00224 Cao, 2021, Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery, Energy Storage Mater, 36, 132, 10.1016/j.ensm.2020.12.022 Cao, 2021, Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries, Adv. Energy Mater., 2101299, 10.1002/aenm.202101299 Gao, 2021, Inorganic colloidal electrolyte for highly robust zinc-ion batteries, Nano-Micro Lett., 13, 1, 10.1007/s40820-021-00595-6 Liu, 2021, Electrolyte strategies toward better zinc-ion batteries, ACS Energy Lett, 6, 1015, 10.1021/acsenergylett.0c02684 Wang, 2021, Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode, J. Mater. Chem., 9, 8452, 10.1039/D0TA12177K Chao, 2018, A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array, Adv. Mater., 30, 1803181, 10.1002/adma.201803181 Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A Ma, 2021, Optimizing electrode/electrolyte interphases and Li-ion flux/solvation with qua-functional heptafluorobutyric anhydride, Angew. Chem. Int. Ed., 60, 20717, 10.1002/anie.202107957 Yi, 2021, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater., 11, 2003065, 10.1002/aenm.202003065 Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 1, 10.1038/nenergy.2016.114 Bai, 2016, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221, 10.1039/C6EE01674J Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y Song, 2018, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28, 1802564, 10.1002/adfm.201802564 Chao, 2019, An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58, 7823, 10.1002/anie.201904174 Hieu, 2021, Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life, Chem. Eng. J., 411, 128584, 10.1016/j.cej.2021.128584 Yuksel, 2020, Metal-organic framework integrated anodes for aqueous zin-ion batteries, Adv. Energy Mater., 10, 1904215, 10.1002/aenm.201904215 Glatz, 2019, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries, ACS Appl. Mater. Interfaces, 12, 3522, 10.1021/acsami.9b16125 Zeng, 2019, Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31, 1903675, 10.1002/adma.201903675 Liu, 2019, Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect, ACS Appl. Mater. Interfaces, 11, 32046, 10.1021/acsami.9b11243 Zhang, 2021, Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries, Chem. Eng. J., 416, 128062, 10.1016/j.cej.2020.128062 Ghosh, 2019, Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life, Energy Technol., 7, 1900442, 10.1002/ente.201900442 Li, 2019, Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries, Nano Energy, 60, 485, 10.1016/j.nanoen.2019.03.077 Sun, 2021, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 133, 2 Qin, 2021, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80, 105478, 10.1016/j.nanoen.2020.105478 Zhang, 2020, Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review, Energy Environ. Sci., 13, 4625, 10.1039/D0EE02620D Guo, 2020, Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries, Energy Storage Mater, 34, 545, 10.1016/j.ensm.2020.10.019 Zhang, 2018, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun., 54, 14097, 10.1039/C8CC07730D Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z He, 2019, Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface, Surf. Coating. Technol., 365, 242, 10.1016/j.surfcoat.2018.10.065 Barros, 2020, Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent, J. Electroanal. Chem., 865, 114129, 10.1016/j.jelechem.2020.114129 Ohtsu, 2013, Chemical and crystallographic characterizations of hydroxyapatite-and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD, Surf. Coating. Technol., 218, 114, 10.1016/j.surfcoat.2012.12.037 Hao, 2021, Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents, Angew. Chem. Int. Ed., 133, 7442, 10.1002/ange.202016531 Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844 Zhu, 2010, Photoluminescence and resonant Raman scattering in N-doped ZnO thin films, Opt Commun., 283, 2695, 10.1016/j.optcom.2010.03.006 Friedrich, 2007, Resonant Raman scattering in hydrogen and nitrogen doped ZnO, Appl. Phys. Lett., 91, 111903, 10.1063/1.2783222 Wesolowski, 1990, Complexation of aluminate anion by bis-tris in aqueous media at 25-50° C, J. Solut. Chem., 19, 159, 10.1007/BF00646610 Rudolph, 1999, Raman-and infrared spectroscopic investigation of aqueous ZnSO4 solutions from 8 C to 165 C: inner-and outer-sphere complexes, Z. Phys. Chem., 209, 181 Luo, 2021, Dendrite-free zinc anode enabled by zinc-chelating chemistry, Energy Storage Mater, 41, 515, 10.1016/j.ensm.2021.06.026 Cui, 2020, An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes, Angew. Chem. Int. Ed., 132, 16737, 10.1002/ange.202005472 Ballesteros, 2007, Zinc electrodeposition in the presence of polyethylene glycol 20000, Electrochim. Acta, 52, 3686, 10.1016/j.electacta.2006.10.042 Ma, 2021, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33, 2007406, 10.1002/adma.202007406 Ma, 2020, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32, 1908121, 10.1002/adma.201908121 Xie, 2020, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy, Environ. Sci., 13, 503 Abdulla, 2020, Review on the suppression of Zn dendrite for high performance of Zn ion battery, J. Met. Mater. Miner., 30, 1