Stabilizing zinc anode via a chelation and desolvation electrolyte additive
Tài liệu tham khảo
Jia, 2020, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev., 120, 7795, 10.1021/acs.chemrev.9b00628
Zhang, 2020, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49, 4203, 10.1039/C9CS00349E
Cao, 2021, Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries, Nano Energy, 84, 105876, 10.1016/j.nanoen.2021.105876
Zhang, 2021, Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery, Adv. Funct. Mater., 31, 2009412, 10.1002/adfm.202009412
Wan, 2019, Design strategies for vanadium-based aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 58, 16358, 10.1002/anie.201903941
Chen, 2021, Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works, Energy Storage Mater, 35, 679, 10.1016/j.ensm.2020.12.001
Tang, 2019, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J
Li, 2021, Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed., 60, 6600, 10.1002/anie.202013993
Qi, 2021, Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth, Adv. Funct. Mater., 31, 2009013, 10.1002/adfm.202009013
Zhang, 2020, Interfacial engineering of polyhedral carbon@ hollowed carbon@SiO2 nanobox with tunable structure for enhanced lithium ion battery, Appl. Surf. Sci., 148039
Cao, 2020, A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode, J. Mater. Chem., 8, 9331, 10.1039/D0TA02486D
Abdulla, 2021, Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries, ACS Appl. Energy Mater., 4, 4602, 10.1021/acsaem.1c00224
Cao, 2021, Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery, Energy Storage Mater, 36, 132, 10.1016/j.ensm.2020.12.022
Cao, 2021, Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries, Adv. Energy Mater., 2101299, 10.1002/aenm.202101299
Gao, 2021, Inorganic colloidal electrolyte for highly robust zinc-ion batteries, Nano-Micro Lett., 13, 1, 10.1007/s40820-021-00595-6
Liu, 2021, Electrolyte strategies toward better zinc-ion batteries, ACS Energy Lett, 6, 1015, 10.1021/acsenergylett.0c02684
Wang, 2021, Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode, J. Mater. Chem., 9, 8452, 10.1039/D0TA12177K
Chao, 2018, A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array, Adv. Mater., 30, 1803181, 10.1002/adma.201803181
Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A
Ma, 2021, Optimizing electrode/electrolyte interphases and Li-ion flux/solvation with qua-functional heptafluorobutyric anhydride, Angew. Chem. Int. Ed., 60, 20717, 10.1002/anie.202107957
Yi, 2021, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater., 11, 2003065, 10.1002/aenm.202003065
Tikekar, 2016, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy, 1, 1, 10.1038/nenergy.2016.114
Bai, 2016, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221, 10.1039/C6EE01674J
Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y
Song, 2018, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28, 1802564, 10.1002/adfm.201802564
Chao, 2019, An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58, 7823, 10.1002/anie.201904174
Hieu, 2021, Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life, Chem. Eng. J., 411, 128584, 10.1016/j.cej.2021.128584
Yuksel, 2020, Metal-organic framework integrated anodes for aqueous zin-ion batteries, Adv. Energy Mater., 10, 1904215, 10.1002/aenm.201904215
Glatz, 2019, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries, ACS Appl. Mater. Interfaces, 12, 3522, 10.1021/acsami.9b16125
Zeng, 2019, Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31, 1903675, 10.1002/adma.201903675
Liu, 2019, Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect, ACS Appl. Mater. Interfaces, 11, 32046, 10.1021/acsami.9b11243
Zhang, 2021, Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries, Chem. Eng. J., 416, 128062, 10.1016/j.cej.2020.128062
Ghosh, 2019, Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life, Energy Technol., 7, 1900442, 10.1002/ente.201900442
Li, 2019, Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries, Nano Energy, 60, 485, 10.1016/j.nanoen.2019.03.077
Sun, 2021, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 133, 2
Qin, 2021, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80, 105478, 10.1016/j.nanoen.2020.105478
Zhang, 2020, Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review, Energy Environ. Sci., 13, 4625, 10.1039/D0EE02620D
Guo, 2020, Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries, Energy Storage Mater, 34, 545, 10.1016/j.ensm.2020.10.019
Zhang, 2018, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun., 54, 14097, 10.1039/C8CC07730D
Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
He, 2019, Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface, Surf. Coating. Technol., 365, 242, 10.1016/j.surfcoat.2018.10.065
Barros, 2020, Evaluation of brass electrodeposition at RDE from cyanide-free bath using EDTA as a complexing agent, J. Electroanal. Chem., 865, 114129, 10.1016/j.jelechem.2020.114129
Ohtsu, 2013, Chemical and crystallographic characterizations of hydroxyapatite-and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD, Surf. Coating. Technol., 218, 114, 10.1016/j.surfcoat.2012.12.037
Hao, 2021, Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents, Angew. Chem. Int. Ed., 133, 7442, 10.1002/ange.202016531
Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844
Zhu, 2010, Photoluminescence and resonant Raman scattering in N-doped ZnO thin films, Opt Commun., 283, 2695, 10.1016/j.optcom.2010.03.006
Friedrich, 2007, Resonant Raman scattering in hydrogen and nitrogen doped ZnO, Appl. Phys. Lett., 91, 111903, 10.1063/1.2783222
Wesolowski, 1990, Complexation of aluminate anion by bis-tris in aqueous media at 25-50° C, J. Solut. Chem., 19, 159, 10.1007/BF00646610
Rudolph, 1999, Raman-and infrared spectroscopic investigation of aqueous ZnSO4 solutions from 8 C to 165 C: inner-and outer-sphere complexes, Z. Phys. Chem., 209, 181
Luo, 2021, Dendrite-free zinc anode enabled by zinc-chelating chemistry, Energy Storage Mater, 41, 515, 10.1016/j.ensm.2021.06.026
Cui, 2020, An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes, Angew. Chem. Int. Ed., 132, 16737, 10.1002/ange.202005472
Ballesteros, 2007, Zinc electrodeposition in the presence of polyethylene glycol 20000, Electrochim. Acta, 52, 3686, 10.1016/j.electacta.2006.10.042
Ma, 2021, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33, 2007406, 10.1002/adma.202007406
Ma, 2020, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32, 1908121, 10.1002/adma.201908121
Xie, 2020, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy, Environ. Sci., 13, 503
Abdulla, 2020, Review on the suppression of Zn dendrite for high performance of Zn ion battery, J. Met. Mater. Miner., 30, 1