Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability

Advanced Materials - Tập 29 Số 24 - 2017
Xianhong Wu1, Zhiyu Wang1, Mengzhou Yu1, Luyang Xiu1, Jieshan Qiu1
1State Key Laboratory of Fine Chemicals School of Chemical Engineering Liaoning Key Lab for Energy Materials and Chemical Engineering PSU-DUT Joint Center for Energy Research Dalian University of Technology Dalian 116024 China

Tóm tắt

The MXenes combining hydrophilic surface, metallic conductivity and rich surface chemistries represent a new family of 2D materials with widespread applications. However, their poor oxygen resistance causes a great loss of electronic properties and surface reactivity, which significantly inhibits the fabrication, the understanding of the chemical nature and full exploitation of the potential of MXene‐based materials. Herein we report a facile carbon nanoplating strategy for efficiently stabilizing the MXenes against structural degradation caused by spontaneous oxidation, which provides a material platform for developing MXene‐based materials with attractive structure and properties. Hierarchical MoS2/Ti3C2‐MXene@C nanohybrids with excellent structural stability, electrical properties and strong interfacial coupling are fabricated by assembling carbon coated few‐layered MoS2 nanoplates on carbon‐stabilized Ti3C2 MXene, exhibiting exceptional performance for Li storage and hydrogen evolution reaction (HER). Remarkably, ultra‐long cycle life of 3000 cycles with high capacities but extremely slow capacity loss of 0.0016% per cycle is achieved for Li storage at a very high rate of 20 A g−1. They are also highly active HER electrocatalyst with very positive onset potential, low overpotential and long‐term stability in acidic solution. Superb properties highlight the great promise of MXene‐based materials in cornerstone applications of energy storage and conversion.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201304138

10.1038/nature13970

10.1126/science.1241488

10.1038/ncomms2664

10.1002/adfm.201402833

10.1021/acs.chemmater.6b01980

10.1002/adfm.201301747

10.1016/j.pmatsci.2012.03.002

10.1073/pnas.1414215111

10.1021/acs.chemmater.5b01623

10.1016/j.mseb.2014.10.009

10.1002/adma.201102306

10.1002/chem.200802097

10.1002/anie.200352386

10.1002/anie.201308354

10.1021/nl202675f

10.1039/C1SC00117E

10.1002/adfm.201504004

10.1039/c3ee41006d

10.1021/nn4002038

10.1002/adma.201602009

10.1021/nl201874w

10.1002/adfm.200900167

10.1016/j.apsusc.2015.11.089

10.1002/adma.201203999

10.1021/ja100102y

10.1002/adfm.200601186

10.1002/adma.201602210

10.1021/acsnano.5b05891

10.1002/anie.201502117

10.1002/adma.201301870

10.1016/j.nanoen.2014.05.009

10.1021/nn506850e

10.1039/c0cc01174f

10.1021/nl902423a

10.1002/adma.200904285

10.1002/adma.200800999

10.1002/adma.200802290

10.1002/adma.200601667

10.1149/1.1467947

10.1038/35035045

10.1002/adma.201504866

10.1038/ncomms7512

Zhao Y., 2013, Nature Commun., 5, 3783

10.1016/S0013-4686(02)00329-8

10.1021/ja502379c

10.1002/ange.201409524