Stabilization of the Viscoelastic Wave Equation with Variable Coefficients and a Delay Term in Nonlocal Boundary Feedback
Tóm tắt
In this paper, we investigate the viscoelastic wave equation with variable coefficients and a delay, which is subject to nonlinear and nonlocal boundary dissipation. The existence of strong and weak solutions is obtained by means of Faedo-Galerkin approximation and denseness argument. By introducing an equivalent energy functional and using the Riemannian geometry method, we show the general decay rate of energy when kernel function satisfies some sufficient small conditions that we provide the range accurately.
Tài liệu tham khảo
Alabau-Boussouira F, Cannarsa P, Sforza D. Decay estimates for second order evolution equations with memory. J Funct Anal. 2011;254(5):1342–72.
Autuori G, Colasuonno F, Pucci P. Blow up at infinity of solutions of polyharmonic Kirchhoff systems. Complex Variables and Elliptic Equations. 2012;57:379–95.
Chueshov I. Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J Differential Equations. 2012;252(2):1229–62.
citation_journal_title=Electron J Differential Equations; citation_title=Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping; citation_author=MM Cavalcanti, V Cavalcanti, JA Soriano; citation_volume=44; citation_publication_date=2002; citation_pages=1-14; citation_id=CR4
citation_journal_title=Israel J Math.; citation_title=Exponential stability for the wave equation with degenerate nonlocal weak damping; citation_author=MM Cavalcanti, VND Cavalcanti, MAJ Silva, CM Webler; citation_volume=219; citation_issue=1; citation_publication_date=2017; citation_pages=189-213; citation_doi=10.1007/s11856-017-1478-y; citation_id=CR5
citation_journal_title=Differential Integral Equations; citation_title=Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains; citation_author=MM Cavalcanti, VN Domingos Cavalcanti, TF Ma; citation_volume=17; citation_issue=5–6; citation_publication_date=2004; citation_pages=495-510; citation_id=CR6
Cao XM, Yao P-F. General decay rate estimates for viscoelastic wave equation with variable coefficients. J Syst Sci Complexity. 2014;27(5):836–52.
Chai SG, Guo YX. Boundary stabilization of wave equations with variable coefficients and memory. Differential Integral Equations. 2004;17(5–6):669–80.
Chai SG, Liu KS. Boundary stabilization of the transmission of wave equations with variable coefficients. Chinese Annals of Mathematics, Series A. 2005;5(5):605–12.
citation_journal_title=J Differential Equations; citation_title=Two questions concerning the boundary control of certain elastic systems; citation_author=R Datko; citation_volume=92; citation_issue=1; citation_publication_date=1991; citation_pages=27-44; citation_doi=10.1016/0022-0396(91)90062-E; citation_id=CR10
Datko R, Lagnese JE, Polis MP. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J Control Optim. 1986;24:152–6.
citation_journal_title=Z Angew Math Phys.; citation_title=Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay; citation_author=QY Dai, ZF Yang; citation_volume=65; citation_issue=5; citation_publication_date=2012; citation_pages=885-903; citation_doi=10.1007/s00033-013-0365-6; citation_id=CR12
Guo BZ, Shao ZC. On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback. Nonlinear Analysis-Theory Methods and Applications. 2009;71(12):5961–78.
citation_journal_title=J Math Anal Appl; citation_title=Stabilization of Euler-Bernoulli plate equation with variable coefficients by nonlinear boundary feedback; citation_author=YX Guo, P-F Yao; citation_volume=317; citation_issue=1; citation_publication_date=2006; citation_pages=50-70; citation_doi=10.1016/j.jmaa.2005.12.006; citation_id=CR14
Jorge Silva MA, Narciso V. Long-time behavior for a plate equation with nonlocal weak damping. Differential Integral Equations. 2014;27(9–10):931–48.
Jorge Silva MA, Narciso V. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping. Evolution Equations and Control Theory. 2017;6:437–70.
Liang F. Stabilization of viscoelastic wave equation with variable coefficients and a delay term in the internal feedback. Bull Korean Math Soc. 2017;54(4):1457–70.
citation_title=Quelques meéthodes de résolution des problėmes aux limites non linéaires; citation_publication_date=1969; citation_id=CR18; citation_author=J-L Lions; citation_publisher=Dunod
Li J, Chai SG. Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback. Nonlinear Analysis-Theory Methods and Applications. 2015;112:105–17.
citation_journal_title=Electron J Differential Equations; citation_title=Stabilization of semilinear wave equations with time-dependent variable coefficients and memory; citation_author=S-J Li, SG Chai; citation_volume=36; citation_publication_date=2023; citation_pages=1-14; citation_id=CR20
citation_journal_title=Electron J Differential Equations; citation_title=Stabilization of a semilinear wave equation with variable coefficients and a delay term in the boundary feedback; citation_author=J Li, H Feng, JQ Wu; citation_volume=112; citation_publication_date=2013; citation_pages=1-18; citation_id=CR21
Lange H, Perla Menzala G. Rates of decay of a nonlocal beam equation. Differential Integral Equations. 1997;10(6):1075–92.
Li YN, Yang ZJ. Optimal attractors of the Kirchhoff wave model with structural nonlinear damping. J Differential Equations. 2020;268(125):7741–73.
citation_journal_title=Discrete Contin Dynam Systems; citation_title=Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping; citation_author=YN Li, ZJ Yang, F Da; citation_volume=39; citation_issue=10; citation_publication_date=2019; citation_pages=5975-6000; citation_doi=10.3934/dcds.2019261; citation_id=CR24
Liu GW, Zhang HW. Blow up at infinity of solutions for integro-differential equation. Appl Math Comput. 2014;230:303–14.
Kirane M, Said-Houari B. Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z Angew Math Phys. 2011;62(6):1065–82.
Messaoudi B. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Analysis-Theory Methods and Applications. 2006;64(10):2314–31.
Messaoudi SA. General decay of solutions of a viscoelastic equation. J Math Anal Appl. 2008;341:1457–67.
Mustafa MI, Messaoudi SA. General stability result for viscoelastic wave equations. J Math Phys. 2012;53(5):867–72.
citation_journal_title=Evolution Equations and Control Theory; citation_title=On a Kirchhoff wave model with nonlocal nonlinear damping; citation_author=V Narciso; citation_volume=9; citation_issue=2; citation_publication_date=2020; citation_pages=487-508; citation_doi=10.3934/eect.2020021; citation_id=CR30
Nicaise S, Pignotti C. Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks. SIAM J Control Optim. 2006;45(5):1561–85.
Ning Z-H, Yan Q-X. Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback. J Math Anal Appl. 2010;367:167–73.
Ning Z-H, Shen C-X, Zhao XP. Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback. J Math Anal Appl. 2013;405:148–55.
Park JY, Park SH. Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation. Czechoslov Math J. 2006;56(131):273–86.
citation_title=Mathematical Problems in Viscoelasticity; citation_publication_date=1987; citation_id=CR35; citation_author=M Renardy; citation_author=W Hrusa; citation_author=JA Nohel; citation_publisher=Longman Scientific and Technical
Wen RL, Chai SG, Guo BZ. Well-posedness and regularity of Euler-Bernoulli equation with variable coefficient and Dirichlet boundary control and collocated observation. Mathematical Methods in the Applied Sciences. 2014;37(18):2889–905.
Wu HX, Shen CL, Yu YL. An Introduction to Riemannian Geometry (in Chinese), Peking University Press, 1989.
Yao P-F. On the observability inequality for exact controllability of wave equations with variable coefficients. SIAM J Control Optim. 1999;37(5):1568–99.
Yao P-F. Modeling and Control in Vibrational and Structural Dynamics, A Differential Geometric Approach. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL, 2011.
Yang ZJ, Ding P, Liu ZM. Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity. Appl Math Lett. 2014;33(1):12–7.
Zhang HW, Li DH, Zhang WX, Hu QY. Asymptotic stability and blow-up for the wave equation with degenerate nonlocal nonlinear damping and source terms. Applicable Analysis, 2020;1–12.