Stabilization of reactive sp carbon chains

Carbon - Tập 215 - Trang 118493 - 2023
Pilarisetty Tarakeshwar1, Moreno Meneghetti2, Jun Wu3, Robert Lloyd Whetten4, Miguel José Yacaman4, Peter R. Buseck1,3
1School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
2Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy
3School of Earth and Science Exploration, Arizona State University, Tempe, AZ, 85287, USA
4Applied Physics and Materials Science Department, Northern Arizona University, 624 S. Knoles Dr., Flagstaff, AZ, 86011, USA

Tài liệu tham khảo

Baeyer, 1885, Ueber polyacetylenverbindungen, Ber. Dtsch. Chem. Ges., 18, 2269, 10.1002/cber.18850180296 Shi, 2016, Confined linear carbon chains as a route to bulk carbyne, Nat. Mater., 15, 634, 10.1038/nmat4617 Zhu, 2021, Unraveling the excitonic transition and associated dynamics in confined long linear carbon chains with time-resolved resonance Raman scattering, Laser Photon. Rev., 15, 10.1002/lpor.202100259 Casari, 2016, Carbon-atom wires: 1-D systems with tunable properties, Nanoscale, 8, 4414, 10.1039/C5NR06175J Banhart, 2015, Chains of carbon atoms: a vision or a new nanomaterial?, Beilstein J. Nanotechnol., 6, 559, 10.3762/bjnano.6.58 Banhart, 2020, Elemental carbon in the sp1 hybridization, ChemTexts, 6, 3, 10.1007/s40828-019-0098-z Bryce, 2021, A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics, J. Mater. Chem. C, 9, 10.1039/D1TC01406D Kroto, 2010, Carbyne and other myths about carbon, Chem. World, 7, 37 Baughman, 2006, Dangerously seeking linear carbon, Science, 312, 1009, 10.1126/science.1125999 Yang, 2022, Synthesis, properties, and applications of carbyne nanocrystals, Mater. Sci. Eng. R Rep., 151, 10.1016/j.mser.2022.100692 Jin, 2009, Deriving carbon atomic chains from graphene, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.205501 Zirzlmeier, 2020, Optical gap and fundamental gap of oligoynes and carbyne, Nat. Commun., 11, 4797, 10.1038/s41467-020-18496-4 Yildizhan, 2011, Photogenerated cumulenic structure of adamantyl endcapped linear carbon chains: an experimental and computational investigation based on infrared spectroscopy, J. Chem. Phys., 134, 10.1063/1.3571451 La Torre, 2015, Strain-induced metal–semiconductor transition observed in atomic carbon chains, Nat. Commun., 6, 6636, 10.1038/ncomms7636 Zang, 2020, Cumulene wires display increasing conductance with increasing length, Nano Lett., 20, 8415, 10.1021/acs.nanolett.0c03794 Scaccabarozzi, 2020, A field-effect transistor based on cumulenic sp-carbon atomic wires, J. Phys. Chem. Lett., 11, 1970, 10.1021/acs.jpclett.0c00141 Liu, 2013, Carbyne from first principles: chain of C atoms, a nanorod or a nanorope, ACS Nano, 7, 10075, 10.1021/nn404177r Timoshevskii, 2015, Atomic structure and mechanical properties of carbyne, Phys. Rev. B, 91, 10.1103/PhysRevB.91.245434 Song, 2023, In situ creation of organometallic molecular junctions via terminal alkynes, J. Phys. Chem. C, 127, 8850, 10.1021/acs.jpcc.3c01337 Li, 2023, Designing long and highly conducting molecular wires with multiple nontrivial topological states, J. Phys. Chem. Lett., 14, 5141, 10.1021/acs.jpclett.3c01081 Tarakeshwar, 2016, Pseudocarbynes: charge-stabilized carbon chains, J. Phys. Chem. Lett., 7, 1675, 10.1021/acs.jpclett.6b00671 Kim, 2020, Pseudocarbynes: linear carbon chains stabilized by metal clusters, J. Phys. Chem. C, 124, 19355, 10.1021/acs.jpcc.0c05014 Kim, 2023, Formation of Au-pseudocarbynes by self-assembly of carbon chains and gold clusters, Carbon, 205, 546, 10.1016/j.carbon.2023.01.060 Whetten, 2019, Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A,60X): structure and bonding principles, Acc. Chem. Res., 52, 34, 10.1021/acs.accounts.8b00481 Jin, 2010, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale, 2, 343, 10.1039/B9NR00160C Love, 2005, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 105, 1103, 10.1021/cr0300789 Yao, 2018, Toward total synthesis of thiolate-protected metal nanoclusters, Acc. Chem. Res., 51, 1338, 10.1021/acs.accounts.8b00065 Leary, 2018, The role of oligomeric gold–thiolate units in single-molecule junctions of thiol-anchored molecules, J. Phys. Chem. C, 122, 3211, 10.1021/acs.jpcc.7b11104 Negishi, 2014, Toward the creation of functionalized metal nanoclusters and highly active photocatalytic materials using thiolate-protected magic gold clusters, Bull. Chem. Soc. Jpn., 87, 375, 10.1246/bcsj.20130288 Cox, 2019, Ligand-Induced structural changes of thiolate-capped gold nanoclusters observed with resistive-pulse nanopore sensing, J. Am. Chem. Soc., 141, 3792, 10.1021/jacs.8b12535 Hossain, 2022, Atomically precise thiolate-protected gold nanoclusters: current status of designability of the structure and physicochemical properties, Aggregate, e255 Fan, 2002, Charge transport through self-assembled monolayers of compounds of interest in molecular electronics, J. Am. Chem. Soc., 124, 5550, 10.1021/ja017706t Lei, 2018, Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144, Angew. Chem. Int. Ed., 57, 8639, 10.1002/anie.201804481 Sinha-Roy, 2021, Crucial role of conjugation in monolayer-protected metal clusters with aromatic ligands: insights from the archetypal Au144L60 cluster compounds, J. Phys. Chem. Lett., 12, 9262, 10.1021/acs.jpclett.1c02597 Neese, 2022, The ORCA program system, WIREs Comput Mol. Sci., 12, 10.1002/wcms.1606 Frisch, 2016 Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913 Lee, 1988, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785 Chai, 2008, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 10, 6615, 10.1039/b810189b Salzner, 2011, Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals, J. Chem. Theor. Comput., 7, 2568, 10.1021/ct2003447 Barone, 2014, Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation, Phys. Chem. Chem. Phys., 16, 1759, 10.1039/C3CP53413H Gronowski, 2022, DFT study on the excited electronic states of cyanopolyynes: benchmarks and applications, Molecules, 27, 5829, 10.3390/molecules27185829 Roy, 2008, Revised basis sets for the LANL effective core potentials, J. Chem. Theor. Comput., 4, 1029, 10.1021/ct8000409 Giannozzi, 2009, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502 Giannozzi, 2017, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa8f79 Carnimeo, 2023, Quantum ESPRESSO: one further step toward the exascale, J. Chem. Theor. Comput., 10.1021/acs.jctc.3c00249 Gubler, 2023, Efficient variable cell shape geometry optimization, J. Comput. Phys. X, 17 Cataldo, 2006, Carbon subsulphide polymer (C3S2)X formation by arcing carbon disulphide with the submerged carbon arc, J. Inorg. Organomet. Polym., 16, 15, 10.1007/s10904-006-9031-1 Milani, 2017, Semiconductor-to-Metal transition in carbon-atom wires driven by sp2 conjugated end groups, J. Phys. Chem. C, 121, 10562, 10.1021/acs.jpcc.7b02246 Tommasini, 2014, π-Conjugation and end group effects in long cumulenes: Raman januszewski, D. Spectroscopy and DFT calculations, J. Phys. Chem. C, 118, 26415, 10.1021/jp509724d Milani, 2015, Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires, Beilstein J. Nanotechnol., 6, 480, 10.3762/bjnano.6.49 Innocenti, 2010, Can Raman spectroscopy detect cumulenic structures of linear carbon chains?, J. Raman Spectrosc., 41, 226, 10.1002/jrs.2413 Krüger, 2001, Interaction of short-chain alkane thiols and thiolates with small gold clusters: adsorption structures and energetics, J. Chem. Phys., 115, 4776, 10.1063/1.1386806 Schaaff, 1997, Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra, J. Phys. Chem. B, 101, 7885, 10.1021/jp971438x Walter, 2008, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci. U.S.A., 105, 9157, 10.1073/pnas.0801001105 Grönbeck, 2006, Theoretical characterization of cyclic thiolated gold clusters, J. Am. Chem. Soc., 128, 10268, 10.1021/ja062584w Tlahuice-Flores, 2013, Vibrational normal modes of small thiolate-protected gold clusters, J. Phys. Chem. C, 117, 12191, 10.1021/jp4033063 Casari, 2007, Stabilization of linear carbon structures in a solid Ag nanoparticle assembly, Appl. Phys. Lett., 90, 10.1063/1.2430676 Ivanenko, 2018, Analysis of the Raman spectrum of kinked carbon chains taking into account the model of various end groups, J. Surf. Investig. X-ray, Synchr. & Neutron Techn., 12, 564, 10.1134/S1027451018030308 Buntov, 2017, 2D-ordered kinked carbyne chains: DFT modeling and Raman characterization, Carbon, 117, 271, 10.1016/j.carbon.2017.03.010 Tommasini, 2008, Modeling phonons in carbon nanowires, Physica E, 40, 2570, 10.1016/j.physe.2007.07.016 Chou, 2011, Vibrational spectroscopy of carbon chains, 375 Milani, 2006, Carbon nanowires: phonon and p-electron confinement, Phys. Rev. B, 74, 10.1103/PhysRevB.74.153418 Qasemnazhand, 2019, Electronic transport properties in the stable phase of a cumulene/B7/cumulene molecular bridge investigated using density functional theory and a tight-binding method, New J. Chem., 43, 10.1039/C9NJ02860A Kertesz, 1978, Ab initio Hartree-Fock crystal orbital studies. II. Energy bands of an infinite carbon chain, J. Chem. Phys., 68, 2779, 10.1063/1.436070 Hu, 2011, Bending effect of sp-hybridized carbon (carbyne) chains on their structures and properties, J. Phys. Chem. C, 115, 1843, 10.1021/jp111851u Casari, 2008, Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon, Phys. Rev. B, 77, 10.1103/PhysRevB.77.195444