Stabilization of reactive sp carbon chains
Tài liệu tham khảo
Baeyer, 1885, Ueber polyacetylenverbindungen, Ber. Dtsch. Chem. Ges., 18, 2269, 10.1002/cber.18850180296
Shi, 2016, Confined linear carbon chains as a route to bulk carbyne, Nat. Mater., 15, 634, 10.1038/nmat4617
Zhu, 2021, Unraveling the excitonic transition and associated dynamics in confined long linear carbon chains with time-resolved resonance Raman scattering, Laser Photon. Rev., 15, 10.1002/lpor.202100259
Casari, 2016, Carbon-atom wires: 1-D systems with tunable properties, Nanoscale, 8, 4414, 10.1039/C5NR06175J
Banhart, 2015, Chains of carbon atoms: a vision or a new nanomaterial?, Beilstein J. Nanotechnol., 6, 559, 10.3762/bjnano.6.58
Banhart, 2020, Elemental carbon in the sp1 hybridization, ChemTexts, 6, 3, 10.1007/s40828-019-0098-z
Bryce, 2021, A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics, J. Mater. Chem. C, 9, 10.1039/D1TC01406D
Kroto, 2010, Carbyne and other myths about carbon, Chem. World, 7, 37
Baughman, 2006, Dangerously seeking linear carbon, Science, 312, 1009, 10.1126/science.1125999
Yang, 2022, Synthesis, properties, and applications of carbyne nanocrystals, Mater. Sci. Eng. R Rep., 151, 10.1016/j.mser.2022.100692
Jin, 2009, Deriving carbon atomic chains from graphene, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.205501
Zirzlmeier, 2020, Optical gap and fundamental gap of oligoynes and carbyne, Nat. Commun., 11, 4797, 10.1038/s41467-020-18496-4
Yildizhan, 2011, Photogenerated cumulenic structure of adamantyl endcapped linear carbon chains: an experimental and computational investigation based on infrared spectroscopy, J. Chem. Phys., 134, 10.1063/1.3571451
La Torre, 2015, Strain-induced metal–semiconductor transition observed in atomic carbon chains, Nat. Commun., 6, 6636, 10.1038/ncomms7636
Zang, 2020, Cumulene wires display increasing conductance with increasing length, Nano Lett., 20, 8415, 10.1021/acs.nanolett.0c03794
Scaccabarozzi, 2020, A field-effect transistor based on cumulenic sp-carbon atomic wires, J. Phys. Chem. Lett., 11, 1970, 10.1021/acs.jpclett.0c00141
Liu, 2013, Carbyne from first principles: chain of C atoms, a nanorod or a nanorope, ACS Nano, 7, 10075, 10.1021/nn404177r
Timoshevskii, 2015, Atomic structure and mechanical properties of carbyne, Phys. Rev. B, 91, 10.1103/PhysRevB.91.245434
Song, 2023, In situ creation of organometallic molecular junctions via terminal alkynes, J. Phys. Chem. C, 127, 8850, 10.1021/acs.jpcc.3c01337
Li, 2023, Designing long and highly conducting molecular wires with multiple nontrivial topological states, J. Phys. Chem. Lett., 14, 5141, 10.1021/acs.jpclett.3c01081
Tarakeshwar, 2016, Pseudocarbynes: charge-stabilized carbon chains, J. Phys. Chem. Lett., 7, 1675, 10.1021/acs.jpclett.6b00671
Kim, 2020, Pseudocarbynes: linear carbon chains stabilized by metal clusters, J. Phys. Chem. C, 124, 19355, 10.1021/acs.jpcc.0c05014
Kim, 2023, Formation of Au-pseudocarbynes by self-assembly of carbon chains and gold clusters, Carbon, 205, 546, 10.1016/j.carbon.2023.01.060
Whetten, 2019, Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A,60X): structure and bonding principles, Acc. Chem. Res., 52, 34, 10.1021/acs.accounts.8b00481
Jin, 2010, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale, 2, 343, 10.1039/B9NR00160C
Love, 2005, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 105, 1103, 10.1021/cr0300789
Yao, 2018, Toward total synthesis of thiolate-protected metal nanoclusters, Acc. Chem. Res., 51, 1338, 10.1021/acs.accounts.8b00065
Leary, 2018, The role of oligomeric gold–thiolate units in single-molecule junctions of thiol-anchored molecules, J. Phys. Chem. C, 122, 3211, 10.1021/acs.jpcc.7b11104
Negishi, 2014, Toward the creation of functionalized metal nanoclusters and highly active photocatalytic materials using thiolate-protected magic gold clusters, Bull. Chem. Soc. Jpn., 87, 375, 10.1246/bcsj.20130288
Cox, 2019, Ligand-Induced structural changes of thiolate-capped gold nanoclusters observed with resistive-pulse nanopore sensing, J. Am. Chem. Soc., 141, 3792, 10.1021/jacs.8b12535
Hossain, 2022, Atomically precise thiolate-protected gold nanoclusters: current status of designability of the structure and physicochemical properties, Aggregate, e255
Fan, 2002, Charge transport through self-assembled monolayers of compounds of interest in molecular electronics, J. Am. Chem. Soc., 124, 5550, 10.1021/ja017706t
Lei, 2018, Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144, Angew. Chem. Int. Ed., 57, 8639, 10.1002/anie.201804481
Sinha-Roy, 2021, Crucial role of conjugation in monolayer-protected metal clusters with aromatic ligands: insights from the archetypal Au144L60 cluster compounds, J. Phys. Chem. Lett., 12, 9262, 10.1021/acs.jpclett.1c02597
Neese, 2022, The ORCA program system, WIREs Comput Mol. Sci., 12, 10.1002/wcms.1606
Frisch, 2016
Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913
Lee, 1988, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785
Chai, 2008, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 10, 6615, 10.1039/b810189b
Salzner, 2011, Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals, J. Chem. Theor. Comput., 7, 2568, 10.1021/ct2003447
Barone, 2014, Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation, Phys. Chem. Chem. Phys., 16, 1759, 10.1039/C3CP53413H
Gronowski, 2022, DFT study on the excited electronic states of cyanopolyynes: benchmarks and applications, Molecules, 27, 5829, 10.3390/molecules27185829
Roy, 2008, Revised basis sets for the LANL effective core potentials, J. Chem. Theor. Comput., 4, 1029, 10.1021/ct8000409
Giannozzi, 2009, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502
Giannozzi, 2017, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa8f79
Carnimeo, 2023, Quantum ESPRESSO: one further step toward the exascale, J. Chem. Theor. Comput., 10.1021/acs.jctc.3c00249
Gubler, 2023, Efficient variable cell shape geometry optimization, J. Comput. Phys. X, 17
Cataldo, 2006, Carbon subsulphide polymer (C3S2)X formation by arcing carbon disulphide with the submerged carbon arc, J. Inorg. Organomet. Polym., 16, 15, 10.1007/s10904-006-9031-1
Milani, 2017, Semiconductor-to-Metal transition in carbon-atom wires driven by sp2 conjugated end groups, J. Phys. Chem. C, 121, 10562, 10.1021/acs.jpcc.7b02246
Tommasini, 2014, π-Conjugation and end group effects in long cumulenes: Raman januszewski, D. Spectroscopy and DFT calculations, J. Phys. Chem. C, 118, 26415, 10.1021/jp509724d
Milani, 2015, Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires, Beilstein J. Nanotechnol., 6, 480, 10.3762/bjnano.6.49
Innocenti, 2010, Can Raman spectroscopy detect cumulenic structures of linear carbon chains?, J. Raman Spectrosc., 41, 226, 10.1002/jrs.2413
Krüger, 2001, Interaction of short-chain alkane thiols and thiolates with small gold clusters: adsorption structures and energetics, J. Chem. Phys., 115, 4776, 10.1063/1.1386806
Schaaff, 1997, Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra, J. Phys. Chem. B, 101, 7885, 10.1021/jp971438x
Walter, 2008, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci. U.S.A., 105, 9157, 10.1073/pnas.0801001105
Grönbeck, 2006, Theoretical characterization of cyclic thiolated gold clusters, J. Am. Chem. Soc., 128, 10268, 10.1021/ja062584w
Tlahuice-Flores, 2013, Vibrational normal modes of small thiolate-protected gold clusters, J. Phys. Chem. C, 117, 12191, 10.1021/jp4033063
Casari, 2007, Stabilization of linear carbon structures in a solid Ag nanoparticle assembly, Appl. Phys. Lett., 90, 10.1063/1.2430676
Ivanenko, 2018, Analysis of the Raman spectrum of kinked carbon chains taking into account the model of various end groups, J. Surf. Investig. X-ray, Synchr. & Neutron Techn., 12, 564, 10.1134/S1027451018030308
Buntov, 2017, 2D-ordered kinked carbyne chains: DFT modeling and Raman characterization, Carbon, 117, 271, 10.1016/j.carbon.2017.03.010
Tommasini, 2008, Modeling phonons in carbon nanowires, Physica E, 40, 2570, 10.1016/j.physe.2007.07.016
Chou, 2011, Vibrational spectroscopy of carbon chains, 375
Milani, 2006, Carbon nanowires: phonon and p-electron confinement, Phys. Rev. B, 74, 10.1103/PhysRevB.74.153418
Qasemnazhand, 2019, Electronic transport properties in the stable phase of a cumulene/B7/cumulene molecular bridge investigated using density functional theory and a tight-binding method, New J. Chem., 43, 10.1039/C9NJ02860A
Kertesz, 1978, Ab initio Hartree-Fock crystal orbital studies. II. Energy bands of an infinite carbon chain, J. Chem. Phys., 68, 2779, 10.1063/1.436070
Hu, 2011, Bending effect of sp-hybridized carbon (carbyne) chains on their structures and properties, J. Phys. Chem. C, 115, 1843, 10.1021/jp111851u
Casari, 2008, Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon, Phys. Rev. B, 77, 10.1103/PhysRevB.77.195444