Stabilization of Expansive Clayey Soil Through Hydrogel for Mechanical Improvements

Shihui Liu1, Kui Du1, Kejun Wen2, Catherine Armwood-Gordon1, Yadong Li2, Iveth Navarro2, Lin Li1
1Department of Civil and Architectural Engineering, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA
2Department of Civil and Environmental Engineering, Jackson State University, 1400 John R. Lynch St, Jackson, MS 39217, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Petry TM, Little DN (2002) Review of stabilization of clays and expansive soils in pavements and lightly loaded structures—history, practice, and future. J Mater Civ Eng 14(6):447–460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

Wray WK, Addison MB, Struzyk KM (eds) (2019) So your home is built on expansive soils: a discussion on how expansive soils affect buildings. American Society of Civil Engineers, Reston, VA

Nalbantoğlu Z (2004) Effectiveness of class C fly ash as an expansive soil stabilizer. Constr Build Mater 18(6):377–381. https://doi.org/10.1016/j.conbuildmat.2004.03.011

Mokhtari M, Dehghani M (2012) Swell-shrink behavior of expansive soils, damage and control. Electron J Geotech Eng 17:2673–2682

Al-Rawas AA, Goosen MF (eds) (2006) Expansive soils: recent advances in characterization and treatment. Taylor & Francis

Jaremski J (2012) Application of the joining pile for foundations on expansive clays and rocks. Am Acad Sch Res J 4(5):1

Seco A, Ramírez F, Miqueleiz L, García B (2011) Stabilization of expansive soils for use in construction. Appl Clay Sci 51(3):348–352. https://doi.org/10.1016/j.clay.2010.12.027

Ta’negonbadi B, Noorzad R (2017) Stabilization of clayey soil using lignosulfonate. Transp Geotech 12:45–55. https://doi.org/10.1016/j.trgeo.2017.08.004

Miller GA, Azad S (2000) Influence of soil type on stabilization with cement kiln dust. Constr Build Mater 14(2):89–97. https://doi.org/10.1016/S0950-0618(00)00007-6

Fatahi B, Khabbaz H, Fatahi B (2012) Mechanical characteristics of soft clay treated with fibre and cement. Geosynth Int 19(3):252–262. https://doi.org/10.1680/gein.12.00012

Bernardi D, DeJong JT, Montoya BM, Martinez BC (2014) Bio-bricks: biologically cemented sandstone bricks. Constr Build Mater 55:462–469

DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210

Wen K, Bu C, Liu S, Li Y, Li L (2018) Experimental investigation of flexure resistance performance of bio-beams reinforced with discrete randomly distributed fiber and bamboo. Constr Build Mater 176:241–249

Tingle J, Santoni R (2003) Stabilization of clay soils with nontraditional additives. Transp Res Rec J Transp Res Board 1819:72–84. https://doi.org/10.3141/1819b-10

Mirzababaei M, Arulrajah A, Ouston M (2017) Polymers for stabilization of soft clay soils. Procedia Eng 189:25–32. https://doi.org/10.1016/j.proeng.2017.05.005

Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687. https://doi.org/10.1039/C3SM52272E

Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128. https://doi.org/10.1126/science.1214804

Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(6337):eaaf3627. https://doi.org/10.1126/science.aaf3627

Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158. https://doi.org/10.1002/adma.200304907

Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492. https://doi.org/10.1038/nature02388

Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136. https://doi.org/10.1038/nature11409

Wen K, Li Y, Huang W, Armwood C, Amini F, Li L (2019) Mechanical behaviors of hydrogel-impregnated sand. Constr Build Mater 207:174–180. https://doi.org/10.1016/j.conbuildmat.2019.02.141

Wang J, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6:1088. https://doi.org/10.3389/fmicb.2015.01088

Dey K, Roy P (2011) Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads. Biotechnol Lett 33(6):1101–1105. https://doi.org/10.1007/s10529-011-0553-4

ASTM D2166/D2166M-13 (2013) Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken, PA

ASTM-D560 (2016) Standard test methods for freezing and thawing compacted soil cement mixtures. ASTM International, West Conshohocken, PA

ASTM-D559 (2015) Standard test methods for wetting and drying compacted soil-cement mixtures. ASTM International, West Conshohocken, PA

Mohamed AEMK (2013) Improvement of swelling clay properties using hay fibers. Constr Build Mater 38:242–247. https://doi.org/10.1016/j.conbuildmat.2012.08.031

Ghasemi M, Moslemizadeh A, Shahbazi K, Mohammadzadeh O, Zendehboudi S, Jafari S (2019) Primary evaluation of a natural surfactant for inhibiting clay swelling. J Petrol Sci Eng 178:878–891. https://doi.org/10.1016/j.petrol.2019.02.073

Rezaeimalek S, Nasouri A, Huang J, Bin-Shafique S, Gilazghi ST (2017) Comparison of short-term and long-term performances for polymer-stabilized sand and clay. J Traffic Transp Eng (English edition) 4(2):145–155. https://doi.org/10.1016/j.jtte.2017.01.003

Consoli NC, da Silva K, Rivoire AB (2017) Compacted clay-industrial wastes blends: long term performance under extreme freeze-thaw and wet-dry conditions. Appl Clay Sci 146:404–410. https://doi.org/10.1016/j.clay.2017.06.032