Stabilization of Cu+by tuning a CuO–CeO2interface for selective electrochemical CO2reduction to ethylene

Green Chemistry - Tập 22 Số 19 - Trang 6540-6546
Senlin Chu1,2,3,4, Xupeng Yan5,6,7,8,9, Changhyeok Choi10,11,12,13, Song Hong1,2,3,4, Alex W. Robertson14,15,16, Justus Masa17,18,19,20, Buxing Han5,6,7,8,9, Yousung Jung10,11,12,13, Zhenyu Sun1,2,21,22,4
1Beijing 100029
2Beijing University of Chemical Technology
3China
4State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
5Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
6CAS Key Laboratory of Colloid and Interface and Thermodynamics
7CAS Research/Education Center for Excellence in Molecular Sciences
8Chinese Academy of sciences
9Institute of Chemistry
10Daejeon 34141
11Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
12Korea Advanced Institute of Science and Technology (KAIST)
13Republic of Korea
14Department of Materials, University of Oxford, Oxford, UK
15Oxford
16University of Oxford.
17Analytische Chemie-Elektroanalytik & Sensorik, Ruhr University Bochum, D-44780, Bochum, Germany
18D-44780 Bochum
19Germany
20Ruhr University, Bochum
21Key Laboratory of Low-Carbon Conversion Science & Engineering
22Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, China

Tóm tắt

By utilizing the synergistic interaction between CuO and CeO2, the stabilization of Cu+species at a metal–oxide interface is realized. H2production is considerably suppressed, resulting in enhanced ethylene production with a high FE of 50.0%.

Từ khóa


Tài liệu tham khảo

Gu, 2019, Science, 364, 1091, 10.1126/science.aaw7515

Nitopi, 2019, Chem. Rev., 119, 7610, 10.1021/acs.chemrev.8b00705

Sun, 2017, Chem, 3, 560, 10.1016/j.chempr.2017.09.009

Ma, 2019, J. CO2 Util., 30, 168, 10.1016/j.jcou.2019.02.001

Tao, 2020, Prog. Mater. Sci., 100637, 10.1016/j.pmatsci.2020.100637

Fan, 2020, Adv. Energy Mater., 10, 1903068, 10.1002/aenm.201903068

Guan, 2020, ACS Energy Lett., 5, 1044, 10.1021/acsenergylett.0c00018

Pi, 2019, Nano Energy, 62, 861, 10.1016/j.nanoen.2019.05.077

Yang, 2019, J. Am. Chem. Soc., 141, 12717, 10.1021/jacs.9b04907

Lv, 2018, Adv. Mater., 30, 1803111, 10.1002/adma.201803111

Jia, 2018, Chem. Sci., 9, 8775, 10.1039/C8SC03732A

Jia, 2019, Curr. Opin. Green Sustainable Chem., 16, 1, 10.1016/j.cogsc.2018.11.002

Liu, 2019, Angew. Chem. Int. Ed., 58, 13828, 10.1002/anie.201907674

Gong, 2019, Nat. Commun., 10, 1, 10.1038/s41467-018-07882-8

Xia, 2019, Nat. Energy, 4, 776, 10.1038/s41560-019-0451-x

Gao, 2018, ACS Catal., 8, 1510, 10.1021/acscatal.7b03612

Liu, 2019, Acta Phys.-Chim. Sin., 35, 1307, 10.3866/PKU.WHXB201908014

Yang, 2020, Acta Phys.-Chim. Sin., 36, 1906085, 10.3866/PKU.WHXB201906085

Fan, 2018, Mater. Today Energy, 10, 280, 10.1016/j.mtener.2018.10.003

Gao, 2018, Acta Phys.-Chim. Sin., 34, 858, 10.3866/PKU.WHXB201802061

Ma, 2017, Nanotechnology, 28, 472001, 10.1088/1361-6528/aa8f6f

Zhou, 2018, Nat. Chem., 10, 974, 10.1038/s41557-018-0092-x

Vasileff, 2018, Chem, 4, 1809, 10.1016/j.chempr.2018.05.001

Huang, 2019, J. Am. Chem. Soc., 141, 2490, 10.1021/jacs.8b12381

Hori, 2003, J. Mol. Catal. A: Chem., 199, 39, 10.1016/S1381-1169(03)00016-5

Wu, 2019, Nat. Energy, 4, 957, 10.1038/s41560-019-0490-3

Lee, 2018, J. Am. Chem. Soc., 140, 8681, 10.1021/jacs.8b02173

Jung, 2019, J. Am. Chem. Soc., 141, 4624, 10.1021/jacs.8b11237

Luc, 2019, Nat. Catal., 2, 423, 10.1038/s41929-019-0269-8

Nam, 2018, J. Am. Chem. Soc., 140, 11378, 10.1021/jacs.8b06407

De Luna, 2018, Nat. Catal., 1, 103, 10.1038/s41929-017-0018-9

Clark, 2017, J. Am. Chem. Soc., 139, 15848, 10.1021/jacs.7b08607

Chu, 2019, Chem. Commun., 55, 12380, 10.1039/C9CC05435A

Li, 2020, ACS Sustainable Chem. Eng., 8, 4948, 10.1021/acssuschemeng.0c00800

Favaro, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6706, 10.1073/pnas.1701405114

Xiao, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6685, 10.1073/pnas.1708380114

Lei, 2020, J. Am. Chem. Soc., 142, 4213, 10.1021/jacs.9b11790

Burroughs, 1976, J. Chem. Soc., Dalton Trans., 1686, 10.1039/dt9760001686

Sun, 2010, Langmuir, 26, 12383, 10.1021/la101060s

Shyu, 1988, J. Catal., 114, 23, 10.1016/0021-9517(88)90005-X

Spanier, 2001, Phys. Rev. B: Condens. Matter Mater. Phys., 64, 245407, 10.1103/PhysRevB.64.245407

Hagemann, 1990, Solid State Commun., 73, 447, 10.1016/0038-1098(90)90048-G

Li, 2015, ChemSusChem, 8, 3651, 10.1002/cssc.201500899

Zhang, 2019, ACS Sustainable Chem. Eng., 7, 15030, 10.1021/acssuschemeng.9b03502

Loiudice, 2016, Angew. Chem. Int. Ed., 55, 5789, 10.1002/anie.201601582

Jiang, 2018, Nat. Catal., 1, 111, 10.1038/s41929-017-0009-x

Lee, 2019, ACS Energy Lett., 4, 2241, 10.1021/acsenergylett.9b01721

Gao, 2017, J. Am. Chem. Soc., 139, 5652, 10.1021/jacs.7b00102

Schouten, 2012, J. Am. Chem. Soc., 134, 9864, 10.1021/ja302668n

Tang, 2009, J. Phys.: Condens. Matter., 21, 084204