Stability of the Relative Equilibria in the Two-body Problem on the Sphere

Regular and Chaotic Dynamics - Tập 26 - Trang 402-438 - 2021
Jaime Andrade1, Claudio Vidal1, Claudio Sierpe2
1Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
2Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile

Tóm tắt

We consider the 2-body problem in the sphere $$\mathbb{S}^{2}$$ . This problem is modeled by a Hamiltonian system with $$4$$ degrees of freedom and, following the approach given in [4], allows us to reduce the study to a system of $$2$$ degrees of freedom. In this work we will use theoretical tools such as normal forms and some nonlinear stability results on Hamiltonian systems for demonstrating a series of results that will correspond to the open problems proposed in [4] related to the nonlinear stability of the relative equilibria. Moreover, we study the existence of Hamiltonian pitchfork and center-saddle bifurcations.

Tài liệu tham khảo

Andoyer, M. H., Cours de Mécaniquee Céleste, Paris: Gauthier-Villars, 1923. Arnol’d, V. I., Proof of a Theorem of A. N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9–36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40. Borisov A. V., Mamaev I. S., Poisson Structures and Lie Algebras in Hamiltonian Mechanics, Izhevsk: R&C Dynamics, 1999 (Russian). Borisov, A. V., García-Naranjo, L. C., Mamaev, I. S., and Montaldi, M., Reduction and Relative Equilibria for the Two-Body Problem on Spaces of Constant Curvature, Celestial Mech. Dynam. Astronom., 2018, vol. 130, no. 6, Art. 43, 36 pp. Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Two-Body Problem on a Sphere: Reduction, Stochasticity, Periodic Orbits, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 265–279. Cabral, H. E. and Meyer, K. R., Stability of Equilibria and Fixed Points of Conservative Systems, Nonlinearity, 1999, vol. 12, no. 5, pp. 1351–1362. Deprit, A., Canonical Transformations Depending on a Small Parameter, Celestial Mech., 1969, vol. 1, pp. 12–30. dos Santos, F. and Vidal, C., Stability of Equilibrium Solutions of Hamiltonian Systems with \(n\)-Degrees of Freedom and Single Resonance in the Critical Case, J. Differential Equations, 2018, vol. 264, no. 8, pp. 5152–5179. Hanßmann, H., Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples, Berlin: Springer, 2007. Killing, H. W., Die Mechanik in den nicht-euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48. Markeev, A. P., Stability of a Canonical System with Two Degrees of Freedom in the Presence of Resonance, J. Appl. Math. Mech., 1968, vol. 32, no. 4, pp. 738–744; see also: Prikl. Mat. Mekh., 1968, vol. 32, no. 4, pp. 766-772. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian). Meyer, K. R. and Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, New York: Springer, 1992. Moser, J. K., Lectures on Hamiltonian Systems, Providence, R.I.: AMS, 1968. Treshchev, D. V., Loss of Stability in Hamiltonian Systems That Depend on Parameters, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 492–500; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 587-596. Sokol’skiĭ, A. G., On Stability of an Autonomous Hamiltonian System with Two Degrees of Freedom under First-Order Resonance, J. Appl. Math. Mech., 1977, vol. 41, no. 1, pp. 20–28; see also: Prikl. Mat. Mekh., 1977, vol. 41, no. 1, pp. 24-33. Sokol’skiĭ, A. G., On the Stability of an Autonomous Hamiltonian System with Two Degrees of Freedom in the Case of Equal Frequencies, J. Appl. Math. Mech., 1974, vol. 38, no. 5, pp. 741–749; see also: Prikl. Mat. Mekh., 1974, vol. 38, no. 5, pp. 791-799.