Stability of standing waves for a class of quasilinear Schrödinger equations

European Journal of Applied Mathematics - Tập 23 Số 5 - Trang 611-633 - 2012
Jianqing Chen1, Yongqing Li1, Zhi-Qiang Wang2
1School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007, P.R. China
2Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA; School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, P. R. China

Tóm tắt

This paper is concerned with the stability and instability of standing waves for the quasilinear Schrödinger equation of the form which has been derived in many models from mathematical physics. We find the exact threshold depending upon the interplay of quasilinear and nonlinear terms that separates stability and instability. More precisely, we prove that for α ∈ and odd p, when $1 < p < 4\alpha -1 +{4\over N}$, the standing wave is stable, and when $4\alpha -1 +{4\over N} \leq p < 2\alpha\cdot 2^\ast -1$ (where $2\alpha\cdot 2^\ast = \frac{4N\alpha}{N-2}$ for N ≥ 3 and 2 α ċ 2* = +∞ for N = 2), the standing wave is strongly unstable. Our results show that the quasilinear term 2 α(△|φ|)|φ|2α−2φ makes the standing waves more stable, which is consistent with the physical phenomena.

Từ khóa


Tài liệu tham khảo

10.1088/0032-1028/19/9/008

10.1007/s00032-008-0089-9

10.1007/BF01212446

10.1063/1.861553

10.1006/jdeq.2000.3853

10.1063/1.862049

Liu, 2003, Soliton solutions for quasilinear Schrödinger equations, Proc. Amer. Math. Soc., 131, 486

10.1016/S0294-1449(16)30428-0

10.1143/JPSJ.50.3262

10.1007/s00222-004-0373-4

Iliev, 1993, Stability and instability of solitary waves for one-dimensional singular Schrödinger equations, Differ. Integral Equ., 6, 685

10.1007/BF01325508

10.1103/PhysRevB.68.184302

10.1007/BF01208265

10.1016/0022-1236(87)90044-9

10.1088/0951-7715/23/6/006

10.1016/j.na.2003.09.008

10.1103/PhysRevLett.70.2082

10.1016/j.apm.2009.03.003

10.1007/BF01403504

10.1016/0022-1236(90)90016-E

10.1016/S0167-2789(01)00332-3

10.1007/BF01626517

10.1088/0951-7715/16/4/317

10.1090/S0002-9947-05-03763-3

10.1016/S0022-0396(02)00064-5

10.1090/S0002-9904-1965-11275-7

Cazenave, 2005, Semilinear Schrödinger Equations

10.1081/PDE-120037335

10.1080/03605309908821469

Berestycki, 1981, Instabilite des etats stationnaires dans les equations de schrodinger et de Klein-Gordon non linearires, C. R. Math. Acad. Sci. Paris, 293, 489

10.1007/s005260100105

10.1007/s002200050191

10.1515/ans-2008-0302

Brihaye, 2006, Solitons on Nanotubes and Fullerenes as Solutions of a Modified Nonlinear Schrödinger Equation, Advances in Soliton Research, 135

Jeanjean, 2006, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differ. Equ., 11, 813

10.1016/S0362-546X(00)00180-2