Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính ổn định của các sóng lan truyền không đơn điệu trong phương trình khuếch tán rời rạc với phi tuyến tích chập đơn bền
Tóm tắt
Bài báo này đề cập đến tính ổn định của các sóng lan truyền không đơn điệu đối với một phương trình khuếch tán rời rạc với phi tuyến tích chập đơn bền. Bằng cách sử dụng phương pháp năng lượng chống trọng số và bất đẳng thức Halanay phi tuyến, chúng tôi chứng minh rằng tất cả các sóng lan truyền không phê duyệt (các sóng có tốc độ c > c*, c* là tốc độ tối thiểu) là ổn định theo thời gian theo cấp số mũ, khi các nhiễu ban đầu xung quanh các sóng là nhỏ. Như một hệ quả của kết quả ổn định của chúng tôi, chúng tôi ngay lập tức thu được tính duy nhất của các sóng lan truyền.
Từ khóa
#tính ổn định; sóng lan truyền; phương trình khuếch tán rời rạc; phi tuyến tích chập; bất đẳng thức HalanayTài liệu tham khảo
Aguerrea M, Gomez C, Trofimchuk S. On uniqueness of semi-wavefronts. Math Ann, 2012, 354: 73–109
Chen X, Fu S C, Guo J S. Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J Math Anal, 2006, 38: 233–258
Chen X, Guo J S. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J Differential Equations, 2002, 184: 549–569
Chern I L, Mei M, Yang X, et al. Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay. J Differential Equations, 2015, 259: 1503–1541
Diekmann O, Kaper H G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Anal, 1978, 2: 721–737
Fang J, Wei J, Zhao X Q. Spreading speeds and travelling waves for non-monotone time-delayed lattice equations. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 1919–1934
Fang J, Wei J, Zhao X Q. Uniqueness of traveling waves for nonlocal lattice equations. Proc Amer Math Soc, 2011, 139: 1361–1373
Guo J S, Lin Y C. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete Contin Dyn Syst, 2012, 32: 101–124
Guo J S, Lin Y C. Entire solutions for a discrete diffusive equation with bistable convolution type nonlinearity. Osaka J Math, 2013, 50: 607–629
Guo J S, Morita Y. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete Contin Dyn Syst, 2005, 12: 193–212
Guo S, Zimmer J. Stability of travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects. Nonlinearity, 2015, 28: 463–492
Guo Y J L. Entire solutions for a discrete diffusive equation. J Math Anal Appl, 2008, 347: 450–458
Hu C, Li B. Spatial dynamics for lattice differential equations with a shifting habitat. J Differential Equations, 2015, 259: 1967–1989
Huang R, Mei M, Zhang K J, et al. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete Contin Dyn Syst, 2016, 36: 1331–1353
Lin C K, Lin C T, Lin Y, et al. Exponential stability of non-monotone traveling waves for Nicholson’s blow ies equation. SIAM J Math Anal, 2014, 46: 1053–1084
Ma S. Traveling waves for non-local delayed diffusion equations via auxiliary equations. J Differential Equations, 2007, 237: 259–277
Ma S, Weng P, Zou X. Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation. Nonlinear Anal, 2006, 65: 1858–1890
Ma S, Zou X. Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay. J Differential Equations, 2005, 217: 54–87
Ma S, Zou X. Propagation and its failure in a lattice delayed differential equation with global interaction. J Differential Equations, 2005, 212: 129–190
Mei M, So J W H. Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation. Proc Roy Soc Edinburgh Sect A, 2008, 138: 551–568
Mei M, So J W H, Li M Y, et al. Asymptotic stability of travelling waves for Nicholson’s blow ies equation with diffusion. Proc Roy Soc Edinburgh Sect A, 2004, 134: 579–594
Shigesada N, Kawasaki K. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution. New York: Oxford University Press, 1997
Shorrocks B, Swingland I R. Living in a Patch Environment. New York: Oxford University Press, 1990
Tian G, Zhang G B. Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system. J Math Anal Appl, 2017, 447: 222–242
Tian G, Zhang G B, Yang Z X. Stability of non-monotone critical traveling waves for spatially discrete reaction-diffusion equations with time delay. Turkish J Math, 2017, 41: 655–680
Weng P, Huang H X, Wu J H. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J Appl Math, 2003, 68: 409–439
Yang Z X, Zhang G B, Tian G, et al. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete Contin Dyn Syst Ser S, 2017, 10: 581–603
Yu Z X. Uniqueness of critical traveling waves for nonlocal lattice equations with delays. Proc Amer Math Soc, 2012, 140: 3853–3859
Zhang G B, Ma R. Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity. Z Angew Math Phys, 2014, 65: 819–844
