Stability of Vacuum for the Boltzmann Equation with Moderately Soft Potentials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)
Alexandre, Radjesvarane, El Safadi, Mouhamad: Littlewood–Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules. Math. Models Methods Appl. Sci. 15 (2005)
Alexandre, Radjesvarane, Villani, C.: On the Boltzmann equation for long-range interactions. Communications on Pure and Applied Mathematics 55 (2004)
Alexandre, Radjesvarane, Morimoto, Yoshinori, Ukai, Seiji, Chao-Jiang, Xu, Yang, Tong: Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 39–123 (2010)
Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential. Anal. Appl. (Singap.) 9(2), 113–134 (2011)
Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Comm. Math. Phys. 304(2), 513–581 (2011)
Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J. Funct. Anal. 262(3), 915–1010 (2012)
Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Local existence with mild regularity for the Boltzmann equation. J. Funct. Anal. Kinet. Relat. Models 6(4), 1011–1041 (2013)
Alonso, Ricardo J., Gamba, Irene M.: Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section. J. Stat. Phys. 137(5–6), 1147–1165 (2009)
Arsénio, Diogo: On the global existence of mild solutions to the Boltzmann equation for small data in $$L^D$$. Comm. Math. Phys. 302(2), 453–476 (2011)
Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)
Bardos, C., Degond, P., Golse, F.: A priori estimates and existence results for the Vlasov and Boltzmann equations. In: Nonlinear systems of partial differential equations in applied mathematics, Part 2 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 189–207. Amer. Math. Soc., Providence, RI (1986)
Bardos, Claude, Gamba, Irene M., Golse, François, David Levermore, C.: Global solutions of the Boltzmann equation over $${\mathbb{R}}^D$$ near global Maxwellians with small mass. Communications in Mathematical Physics 346(2), 435–467 (2016)
Bellomo, N., Toscani, G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic stability. J. Math. Phys. 26(2), 334–338 (1985)
Bigorgne, Léo: Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions (2017). arXiv:1712.09698, preprint
Bigorgne, Léo: Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data (2018). arXiv:1812.09716, preprint
Bigorgne, Léo: Sharp asymptotic behavior of solutions of the 3d Vlasov-Maxwell system with small data (2019). arXiv:1812.11897 , preprint
Bigorgne, Léo: Asymptotic properties of the solutions to the Vlasov-Maxwell system in the exterior of a light cone (2019). arXiv:1902.00764 , preprint
Bigorgne, Léo: A vector field method for massless relativistic transport equations and applications (2019). arXiv:1907.03121 , preprint
Léo Bigorgne, David Fajman, Jérémie Joudioux, Jacques Smulevici, and Maximilian Thaller. Asymptotic Stability of Minkowski Space-Time with non-compactly supported massless Vlasov matter arXiv:2003.03346, preprint, 2020
Cercignani, C.: The Boltzmann equation and its applications. Applied mathematical sciences, vol. 67. Springer-Verlag, Berlin (1988)
Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied mathematical sciences, vol. 106. Springer-Verlag, Berlin (1994)
Chaturvedi, Sanchit: Stability of vacuum for the Landau Equation with hard potentials (2020). arXiv:2001.07208, preprint
Desvillettes, Laurent: About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phy. 168 (1995)
Desvillettes, Laurent, Wennberg, Brent: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Math. Phy. 29 (2004)
Desvillettes, Laurent, Mouhot, Clément.: Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch. Ration. Mech. Anal. 193 (2009)
Desvillettes, Laurent, Villani, Cédric.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159 (2005)
DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math 130 (1989)
Fajman, David, Joudioux, Jérémie, Smulevici, Jacques: The stability of the Minkowski space for the Einstein–Vlasov system (2017). arXiv:1707.06141, preprint
Fajman, David, Joudioux, Jérémie, Smulevici, Jacques: A vector field method for relativistic transport equations with applications. Anal. PDE 10(7), 1539–1612 (2017)
Glassey, R.T., Schaeffer, J.W.: Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data. Comm. Math. Phys. 119(3), 353–384 (1988)
Glassey, Robert T., Strauss, Walter A.: Absence of shocks in an initially dilute collisionless plasma. Comm. Math. Phys. 113(2), 191–208 (1987)
Goudon, T.: Generalized invariant sets for the Boltzmann equation. Math. Models Methods Appl. Sci. 7(4), 457–476 (1997)
Grad, H.: Asymptotic theory of the Boltzmann equation II, rarefied gas dynamics Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962, Vol. I, pp. 26–59. Academic Press, New York (1963)
Gressman, Philip T., Strain, Robert M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011)
Gressman, Philip T., Strain, Robert M.: Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv. Math 227(6), 2349–2384 (2011)
Guo, Yan: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)
Guo, Yan: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)
Guo, Yan: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)
Hamdache, Kamel: Existence in the large and asymptotic behaviour for the Boltzmann equation. Japan J. Appl. Math. 2(1), 1–15 (1985)
He, Lingbing, Jiang, Jin-Cheng: Well-posedness and scattering for the Boltzmann equations: soft potential with cut-off. J. Stat. Phys. 168(2), 470–481 (2017)
Henderson, Christopher, Snelson, Stanley, Tarfulea, Andrei: Local existence, lower mass bounds, and a new continuation criterion for the Landau equation. Journal of Differential Equations (2019). https://doi.org/10.1016/j.jde.2018.08.005
Henderson, Christopher, Snelson, Stanley, Tarfulea, Andrei: Local well-posedness of the Boltzmann equation with polynomially decaying initial data (2019). arXiv:1910.07138, preprint
Illner, Reinhard, Shinbrot, Marvin: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Comm. Math. Phys. 95(2), 217–226 (1984)
Imbert, Cyril, Mouhot, Clément, Silvestre, Luis: Decay estimates for large velocities in the Boltzmann equation without cut-off (2018). arXiv:1804.06135, preprint
Imbert, Cyril, Mouhot, Clément, Silvestre, Luis: Gaussian lower bounds for the Boltzmann equation without cut-off (2019). arXiv:1903.11278, preprint
Imbert, Cyril, Silvestre, Luis: The weak Harnack inequality for the Boltzmann equation without cut-off (2016). arXiv:1608.07571, preprint
Imbert, Cyril, Silvestre, Luis: The Schauder estimate for kinetic integral equations (2018). arXiv:1812.11870, preprint
Imbert, Cyril, Silvestre, Luis: Global regularity estimates for the Boltzmann equation without cut-off (2019). arXiv:1909.12729 , preprint
Klainerman, Sergiu: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math. 38, 3 (1985)
David Levermore, C.: Global Maxwellians over all space and their relation to conserved quantites of classical kinetic equations. preprint, available online (2012)
Lions, P.L.: On Boltzmann and Landdau equations. Phil. Trans. Roy. Soc. London Ser. A 346(1), 191–204 (1994)
Lindblad, Hans, Taylor, Martin: Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge. Ann. PDE 3, 9 (2017). https://doi.org/10.1007/s40818-017-0026-8
Luk, Jonathan: Stability of vacuum for the Landau equation with moderately soft potentials. Ann. PDE 5, 11 (2019). https://doi.org/10.1007/s40818-019-0067-2
Polewczak, Jacek: Classical solution of the nonlinear Boltzmann equation in all $${ R}^3$$: asymptotic behavior of solutions. J. Statist. Phys. 50(3–4), 611–632 (1988)
Silvestre, Luis: A new regularization mechanism for the Boltzmann equation without cut-off. Commun. Math. Phys. 348, 69 (2016)
Smulevici, Jacques: Small data solutions of the Vlasov-Poisson system and the vector field method. Ann. PDE 2(2), Art. 11, 55 (2016)
Stein, Elias: Singular Integrals and Differentiability Properties of Functions. Princeton U.P. (1970)
Strain, Robert M., Guo, Yan: Stability of the relativistic Maxwellian in a collisional plasma. Comm. Math. Phys. 251(2), 263–320 (2004)
Strain, Robert M., Guo, Yan: Almost exponential decay near Maxwellian. Comm. Partial Differential Equations 31(1–3), 417–429 (2006)
Taylor, Martin: The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system. Ann. PDE 3(1), Art. 9, 177 (2017)
Toscani, G.: On the nonlinear Boltzmann equation in unbounded domains. Arch. Rational Mech. Anal. 95(1), 37–49 (1986)
Toscani, G.: $$H$$-theorem and asymptotic trend of the solution for a rarefied gas in the vacuum. Arch. Rational Mech. Anal. 100(1), 1–12 (1987)
Toscani, G.: Global solution of the initial value problem for the Boltzmann equation near a local Maxwellian. Arch. Rational Mech. Anal. 102(3), 231–241 (1988)
Toscani, G., Bellomo, N.: Global existence, uniqueness and stability of the nonlinear Boltzmann equation with almost general gas-particles interaction potential. In: Proceedings of the conference commemorating the 1st centennial of the Circolo Matematico di Palermo (Italian) (Palermo, 1984), number 8, pp. 419–433 (1985)
Villani, Cédric: Fisher information estimates for Boltzmann’s collision operator. Journal de Mathématiques Pures et Appliqués (1998). https://doi.org/10.1016/S0021-7824(98)80010-X
Villani, Cédric: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics (2002). https://doi.org/10.1016/S1874-5792(02)80004-0
Villani, Cédric.: Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoamericana 15 (1999)
Wang, Xuecheng: Decay estimates for the 3D relativistic and non-relativistic Vlasov–Poisson systems (2018). arXiv:1805.10837, preprint
Wang, Xuecheng: Propagation of regularity and long time behavior of the 3D massive relativistic transport equation I: Vlasov–Nordstrøm system (2018). arXiv:1804.06560, preprint
Wang, Xuecheng: Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov–Maxwell system (2018). arXiv:1804.06566, preprint