Stability of Solitary Waves for the Modified Camassa-Holm Equation

Annals of PDE - Tập 7 Số 2 - 2021
Li Ji1, Yue Liu2
1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
2Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albert, J.: Concentration compactness and the stability of solitary-wave solutions to nonlocal equations. Contem. Math. 221, 1–29 (1999)

Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

Chen, R. M., Hu, T. Q., and Liu, Y.: The integrable shallow-water models with cubic nonlinearity, submitted

Chen, R.M., Liu, Y., Qu, C., Zhang, S.: Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Archive for Rational Mechanics and Analysis 192(1), 165–186 (2009)

Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)

Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

Constantin, A., Strauss, W.: Stability of the Camassa-Holm solitons. J. Nonlinear Science 12, 415–422 (2002)

Fokas, A.S.: The Korteweg-de Vries equation and beyond. Acta Appl. Math. 39, 295–305 (1995)

Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D. 95, 229–243 (1996)

Grillakis, M., Shatah, J., and Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I., J. Funct. Anal., 74 , 160–197 (1987)

Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking, peakons for a modified Camassa-Holm equation. Comm. Math. Phys. 319, 731–759 (2013)

Hormander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

Li, J., Liu, Y., Wu, Q.: Spectral stability of smooth solitary waves for the Degasperis-Procesi Equation. J. Math. Pures Appl. 142, 298–314 (2020)

Li, J., Liu, Y., and Wu, Q.: Orbital stability of smooth solitary waves for the Degasperis-Procesi Equation, submitted

Lin, Z., and Zeng, C.: Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs, arXiv:1703.04016v1 (math.AP), pg 175, (2017)

Lions, P.: The concentration compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincare, Anal. Non Lineare 1 , 109–145 (1984)

Matsuno, Y.: Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion, J. Phys. A, 47 , 25 pp (2014)

Murat, F.: Compacite par compensation, Annali Sc. Norm. Sup. Pisa 5 (IV) 489–507 (1978)

Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E. 53, 1900–1906 (1996)

Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196, 90–105 (2004)