Stability of Solitary Waves for the Modified Camassa-Holm Equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albert, J.: Concentration compactness and the stability of solitary-wave solutions to nonlocal equations. Contem. Math. 221, 1–29 (1999)
Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Chen, R. M., Hu, T. Q., and Liu, Y.: The integrable shallow-water models with cubic nonlinearity, submitted
Chen, R.M., Liu, Y., Qu, C., Zhang, S.: Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)
Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Archive for Rational Mechanics and Analysis 192(1), 165–186 (2009)
Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)
Constantin, A., Strauss, W.: Stability of the Camassa-Holm solitons. J. Nonlinear Science 12, 415–422 (2002)
Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)
Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D. 95, 229–243 (1996)
Grillakis, M., Shatah, J., and Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I., J. Funct. Anal., 74 , 160–197 (1987)
Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking, peakons for a modified Camassa-Holm equation. Comm. Math. Phys. 319, 731–759 (2013)
Hormander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)
Li, J., Liu, Y., Wu, Q.: Spectral stability of smooth solitary waves for the Degasperis-Procesi Equation. J. Math. Pures Appl. 142, 298–314 (2020)
Li, J., Liu, Y., and Wu, Q.: Orbital stability of smooth solitary waves for the Degasperis-Procesi Equation, submitted
Lin, Z., and Zeng, C.: Instability, index theorem, and exponential trichotomy for linear Hamiltonian PDEs, arXiv:1703.04016v1 (math.AP), pg 175, (2017)
Lions, P.: The concentration compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincare, Anal. Non Lineare 1 , 109–145 (1984)
Matsuno, Y.: Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion, J. Phys. A, 47 , 25 pp (2014)
Murat, F.: Compacite par compensation, Annali Sc. Norm. Sup. Pisa 5 (IV) 489–507 (1978)
Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E. 53, 1900–1906 (1996)
Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)
Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)