Stability estimates in identification problems for the convection-diffusion-reaction equation

Г. В. Алексеев1, I. S. Vakhitov2, О. М. Соболева2
1Far Eastern Federal University, Vladivostok, Russia
2Institute of Applied Mathematics, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. I. Marchuk, Mathematical Models in Environmental Problems (Nauka, Moscow, 1982; Elsevier, New York, 1986).

K. Ito and K. Kunisch, “Estimation of the Convection Coefficient in Elliptic Equations,” Inverse Probl. 14, 995–1013 (1997).

G. Chavent and K. Kunisch, “The Output Least Squares Identifiability of the Diffusion Coefficient from an H 1-Observation in a 2-D Elliptic Equation,” ESAIM: Control, Optim. Calculus Variations, No. 8, 423–440 (2002).

V. I. Agoshkov, F. P. Minuk, A. S. Rusakov, and V. B. Zalesny, “Study and Solution of Identification Problems for Nonstationary 2D- and 3D-Convection-Diffusion Equation,” Russ. J. Numer. Anal. Math. Model. 20(1), 19–43 (2005).

L. Gongsheng, Y. De, and Y. Fugui, “An Inverse Problem of Identifying Source Coefficient in Solute Transportation,” J. Inverse Ill-Posed Probl. 16, 51–63 (2008).

G. V. Alekseev and D. A. Tereshko, “Extremum Problems of Boundary Control for Stationary Thermal Convection Equations,” Prikl. Mekh. Tekh. Phys. 51(4), 72–84 (2010).

G. V. Alekseev and A. M. Khludnev, “Stability of Solutions to Extremal Problems of Boundary Control for Stationary Heat Convection Equations,” J. Appl. Ind. Math. 5(1), 1–13 (2010).

S. G. Pyatkov, “On Some Classes of Inverse Problems for Parabolic Equations,” J. Inverse Ill-Posed Probl. 18, 917–934 (2011).

G. V. Alekseev and D. A. Tereshko, “Two-Parameter Extremum Problems of Boundary Control for Stationary Thermal Convection Equations,” Comput. Math. Math. Phys. 51, 1539–1557 (2011).

O. M. Alifanov, E. A. Artyukhin, and S. V. Rumyantsev, Extremal Solutions to Ill-Posed Problems and Their Applications to Inverse Heat Transfer Problems (Nauka, Moscow, 1988) [in Russian].

A. A. Samarskii and P. N. Vabishevich, Numerical Methods for Inverse Problems in Mathematical Physics (Editorial URSS, Moscow, 2004) [in Russian].

G. V. Alekseev and D. A. Tereshko, Analysis and Optimization in Viscous Fluid Dynamics (Dal’nauka, Vladivostok, 2008) [in Russian].

G. V. Alekseev, “Uniqueness and Stability in Coefficient Identification Problems for a Stationary Model of Mass Transfer,” Dokl. Math. 76, 797–800 (2007).

G. V. Alekseev, O. V. Soboleva, and D. A. Tereshko, “Identification Problems for a Steady Mass Transfer Model,” Prikl. Mekh. Tekh. Fiz. 49(4), 24–35 (2008).

I. S. Vakhitov, “Inverse Identification Problem for Unknown Coefficient in the Diffusion-Reaction Equation,” Dal’nevost. Mat. Zh. 10(2), 93–105 (2010).

O. V. Soboleva, “Inverse Extremal Problem for the Stationary Convection-Diffusion-Reaction Equation,” Dal’nevost. Mat. Zh. 10(2), 170–184 (2010).

V. V. Penenko, “Variational Methods of Data Assimilation and Inverse Problems for Studying the Atmosphere, Ocean, and Environment,” Numer. Anal. Appl. 2, 341–351 (2009).

V. I. Agoshkov, “Optimal Control Methods in Inverse Problems and Computational Processes,” J. Inv. Ill-Posed Probl. 9, 205–218 (2001).

A. T. Ismail-Zade, A. I. Korotkii, B. M. Naimark, and I. A. Tsepelev, “Three-Dimensional Numerical Simulation of the Inverse Problem of Thermal Convection,” Comput. Math. Math. Phys. 43, 587–599 (2003).

A. T. Ismail-Zade, A. I. Korotkii, and I. A. Tsepelev, “Three-Dimensional Numerical Simulation of the Inverse Thermal Convection Problem Using the Quasi-Reversibility Method,” Comput. Math. Math. Phys. 46, 2176–2186 (2006).

A. I. Korotkii and I. A. Tsepelev, “Direct and Inverse Problems of High-Viscosity Fluid Dynamics,” Autom. Remote Control 68, 822–833 (2007).

A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1986).

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems (Nauka, Moscow, 1974; Elsevier, Amsterdam, 1978).

A. V. Fursikov, Optimal Control of Distributed Systems: Theory and Applications (Nauchnaya Kniga, Novosibirsk, 1999; Am. Math. Soc., Providence, R.I., 2000).

J. Cea, Optimisation: Theyrie et algorithmes (Dunod, Paris, 1971; Mir, Moscow, 1973).