Stability estimates for semigroups in the Banach case
Tóm tắt
The purpose of this paper is to revisit previous works of the author with Helffer and Sjöstrand (
arXiv:1001.4171v1
. 2010; Int Equ Op Theory 93(3):36, 2021) on the stability of semigroups which were proved in the Hilbert case by considering the Banach case at the light of a paper by Latushkin and Yurov (Discrete Contin Dyn Syst 33:5203–5216, 2013).
Từ khóa
Tài liệu tham khảo
H. Amann and J. Escher. Strongly continuous dual semigroups. Annali di Matematica pura ed applicata (IV), Vol. CLXXI (1996), 41–62.
R. Chill, D. Seifert, and Y. Tomilov. Semi-uniform stability of operator semigroups and energy decay of damped waves. Philosophical Transactions A. The Royal Society Publishing. (2020).
E.B. Davies. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007.
K.J. Engel, R. Nagel. A short course on operator semigroups. Berlin, Springer-Verlag (2005).
B. Helffer. Spectral Theory and its Applications. Cambridge University Press, Cambridge (2013)
B. Helffer and J. Sjöstrand. From resolvent bounds to semigroup bounds. ArXiv:1001.4171v1, (2010).
B. Helffer, J. Sjöstrand. (2021) Improving semigroup bounds with resolvent estimates. Int. Eq. Op. Theory, 93(3): 36
B. Helffer, J. Sjöstrand, and J. Viola. Discussing semigroup bounds with resolvent estimates. Integr. Equ. Oper. Theory (2024) 96:5. https://doi.org/10.1007/s00020-024-02754-x.
Y. Latushkin and V. Yurov. (2013) Stability estimates for semigroups on Banach spaces. Discrete and continuous dynamical systems. 33(1112): 5203-5216
A. Pazy. Semigroups of linear operators and applications to partial differential operators. Appl. Math. Sci. Vol. 44, Springer (1983).
J. Peetre. Sur la transformation de Fourier des fonctions à valeurs vectorielles. Rendiconti del Seminario Matematico della Università di Padova, tome 42 (1969), 15–26.
J. Rozendaal. (2023) Operator-valued \((L^p,L^q)\) Fourier multipliers and stability theory for evolution equations. Indigationes Mathematicae 34, 1–36.
J. Rozendaal and M. Veraar. Sharp growth rates for semigroups using resolvent bounds. J. Evol. Equ. 18 (2018), 1721-1744.
J. Sjöstrand. Spectral properties for non self-adjoint differential operators. Proceedings of the Colloque sur les équations aux dérivées partielles, Évian, (2009)
J. Sjöstrand. Non self-adjoint differential operators, spectral asymptotics and random perturbations. Pseudo-differential Operators and Applications. Birkhäuser (2018).
Dongyi Wei. Diffusion and mixing in fluid flow via the resolvent estimate. Sci. China Math. 64 (2021), no. 3, 507–518.