Stability and local minimality of spherical harmonic twists $$u={\mathbf {Q}}(|x|) x|x|^{-1}$$ , positivity of second variations and conjugate points on $$\mathbf{SO}(n)$$

The Journal of Analysis - Tập 28 - Trang 431-460 - 2019
Stuart Day1, Ali Taheri1
1Department of Mathematics, University of Sussex, Brighton, UK

Tóm tắt

In this paper we discuss the stability and local minimising properties of spherical twists that arise as solutions to the harmonic map equation $$\begin{aligned} \mathbf{HME}[u;\, \mathbb {X}^n, \mathbb {S}^{n-1}] :=\left\{ \begin{array}{ll} \Delta u + |\nabla u|^2 u =0 &{} \qquad \text { in } \mathbb {X}^n, \\ |u|=1 &{}\qquad \text { in } \mathbb {X}^n , \\ u = \varphi &{}\qquad \text { on } \partial \mathbb {X}^n, \end{array}\right. \end{aligned}$$by way of examining the positivity of the second variation of the associated Dirichlet energy. Here, following [31], by a spherical twist we mean a map $$u \in \mathscr {W}^{1,2}(\mathbb {X}^n, \mathbb {S}^{n-1})$$ of the form $$x \mapsto {\mathbf {Q}}(|x|)x|x|^{-1}$$ where $${\mathbf {Q}}={\mathbf {Q}}(r)$$ lies in $$\mathscr {C}([a, b], \mathbf{SO}(n))$$ and $${\mathbb {X}}^n=\{x \in \mathbb {R}^n : a<|x|

Tài liệu tham khảo

Alouges, F., and J. Ghidaglia. 1997. Minimizing Oseen-Frank energy for nematic liquid crystals: Algorithms and numerical results. Annales de l’IHP Physique théorique 66: 411–447. Baldes, A. 1984. Stability and uniqueness properties of the equator map from a ball into an ellipsoid. Math. Z. 185 (4): 505–516. Berger, M. 2007. A Panoramic view of Riemannian Geometry. Berlin: Springer. Bedford, S. 2016. Function spaces for liquid crystal theory. Archive for Rational Mechanics and Analysis 219 (2): 937–984. Bourgain, J., H. Brezis, and P. Mironescu. 2000. Lifting in Sobolev spaces. Journal d’analyse Mathématique 80 (1): 37–86. Bourgoin, J.C. 2006. The minimality of the map \(x/||x||\) for weighted energy. Calculus of Variations and Partial Differential 25 (4): 469–489. Brezis, H., Y. Li, P. Mironescu, and L. Nirenberg. 1999. Degree and Sobolev spaces. Topological Methods in Nonlinear Analysis 13 (2): 181–190. Cicalese, M., M. Ruf, and F. Solombrino. 2017. On global and local minimizers of prestrained thin elastic rods. Topological Methods in Nonlinear Analysis 56 (4): 115. Cesari, L. 1983. Optimization theory and applications: Problems with ordinary differential equations, applications of mathematics, vol. 17. Berlin: Springer. Chavel, I. 2006. Riemannian Geometry: A Modern Introduction, vol. 98., Cambridge Studies in Advanced Mathematics: Cambridge University Press. Day, S., and A. Taheri. 2018. Geodesics on \({\mathbf{SO}}(n)\) and a class of spherically symmetric mappings as solutions to a nonlinear generalised harmonic map problem. Topological Methods in Nonlinear Analysis 51 (2): 637–662. Day, S., and A. Taheri. 2017. A class of extremising sphere-valued maps with inherent maximal tori symmetries in \({\mathbf{SO}}(n)\). Boundary Value Problems 2017: 187. Eells, J., and L. Lemaire. 1978. A report on harmonic maps. Bulletin of the London Mathematical Society 10: 1–68. Eells, J., and L. Lemaire. 1988. Another report on harmonic maps. Bulletin of the London Mathematical Society 20: 385–524. Ericksen, J.L. 1966. Inequalities in liquid crystal theory. Physics of Fluids 9 (6): 1205–1207. Giaquinta, M., G. Modica, and J. Soucek. 1998. Cartesian Currents in the Calculus of Variations, vol. I & II. Berlin: Springer. Fegan, H.D. 1991. Introduction to Compact Lie Groups, vol. 13., Series in Pure Mathematics Singapore: World Scientific. Hang, F.B., and F.H. Lin. 2001. Topology of Sobolev mappings. Mathematical Research Letters 8: 321–330. Knapp, A.W. 2002. Lie Groups beyond an introduction, progress in mathematics, 2nd ed. Basel: Birkhäuser. Lin, F.H. 1987. A remark on the map \(x/|x|\). CRA Science 305 (12): 529–531. Mazet, E. 1973. La formule de la variation seconde de l’énergie au voisinage d’une application harmonique. Journal of Differential Geometry 8 (2): 279–296. Morrison, G., and A. Taheri. 2018. An infinite scale of incompressible twisting solutions to the nonlinear elliptic system \(\mathscr {L}[u;\, A, B]=\nabla \mathscr {P}\) and the discriminant \(\Delta (h, g)\). Nonlinear Analysis 173: 209–219. Noll, D. 1993. Second order differentiability of integral functionals on Sobolev spaces and \(L^2\)-spaces. Journal für die Reine und Angewandte Mathematik 436: 1–17. Sepanski, M.R. 2007. Compact Lie Groups, Graduate Texts in Mathematics, vol. 235. Berlin: Springer. Simon, B. 1995. Representations of Finite and Compact Groups, vol. 10., Graduate Studies in Mathematics Providence: American Mathematical Society. Smith, R.T. 1975. The second variation formula for harmonic mappings. Proceedings of the American Mathematical Society 47 (1): 229–236. Taheri, A. 2001. Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 131: 155–184. Taheri, A. 2002. Strong versus weak local minimizers for the perturbed Dirichlet functional. Calculus of Variations and Partial Differential Equations 15 (2): 215–235. Taheri, A. 2005. Local minimizers and quasiconvexity—the impact of topology. Archive for Rational Mechanics and Analysis 176 (3): 363–414. Taheri, A. 2010. Homotopy classes of self-maps of annuli, generalised twists and spin degree. Archive for Rational Mechanics and Analysis 197 (1): 239–270. Taheri, A. 2012. Spherical twists, stationary paths and harmonic maps from generalised annuli into spheres. NoDEA 19: 79–95. Taheri, A. 2015. Function Spaces and Partial Differential Equations, vol. I & II., Oxford Lecture Series in Mathematics and its Applications: Oxford University Press. Virga, E.G. 1994. Variational theories for liquid crystals, vol. 8., Applied mathematics and mathematical computation London: Chapman & Hall. White, B. 1988. Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Mathematica 160: 1–17.