Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001). https://doi.org/10.1016/S0266-3538(01)00007-0
Carlsson, L.A., Kardomateas, G.A.: Structural and Failure Mechanics of Sandwich Composites. Springer, Dordrecht, New York (2011)
Bradford, M.A., Yazdi, N.A.: A Newmark-based method for the stability of columns. Comput. Struct. 71(6), 689–700 (1999). https://doi.org/10.1016/S0045-7949(98)00219-3
Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30(9), 2183–2193 (1995). https://doi.org/10.1007/bf01184560
Mortensen, A., Suresh, S.: Functionally graded metals and metal-ceramic composites: part 1 processing. Int. Mater. Rev. 40(6), 239–265 (1995). https://doi.org/10.1179/imr.1995.40.6.239
Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int. Mater. Rev. 42(3), 85–116 (1997). https://doi.org/10.1179/imr.1997.42.3.85
Birman, V.: Modeling and analysis of functionally graded materials and structures. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, pp. 3104–3112. Springer Netherlands, Dordrecht (2014). https://doi.org/10.1007/978-94-007-2739-7_574
Shukla, A., Jain, N., Chona, R.: A review of dynamic fracture studies in functionally graded materials. Strain. 43(2), 76–95 (2007). https://doi.org/10.1111/j.1475-1305.2007.00323.x
Kolakowski, Z., Teter, A.: Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression. Compos. Struct. 123(Supplement C), 257–262 (2015). https://doi.org/10.1016/j.compstruct.2014.12.051
Darilmaz, K., Aksoylu, M.G., Durgun, Y.: Buckling analysis of functionally graded material grid systems. Struct. Eng. Mech. 54(5), 877–890 (2015)
Kolakowski, Z., Teter, A.: Interactive buckling of FGM columns under compression. Stability of structures XIVth symposium Zakopane, Zakopane, pp 49–50 (2015)
Darbandi, S.M., Firouz-Abadi, R.D., Haddadpour, H.: Buckling of variable section columns under axial loading. J. Eng. Mech. 136(4), 472–476 (2010). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000096
Šapalas, V., Samofalov, M., Šaraškinas, V.: Fem stability analysis of tapered beam-columns. J. Civil Eng. Manag. 11(3), 211–216 (2005). https://doi.org/10.1080/13923730.2005.9636352
Shooshtari, A., Khajavi, R.: An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler–Bernoulli and Timoshenko beam elements. Eur. J. Mech. A Solids. 29(5), 826–836 (2010). https://doi.org/10.1016/j.euromechsol.2010.04.003
Léotoing, L., Drapier, S., Vautrin, A.: First applications of a novel unified model for global and local buckling of sandwich columns. Eur. J. Mech. A Solids. 21(4), 683–701 (2002). https://doi.org/10.1016/S0997-7538(02)01229-9
Frostig, Y., Baruch, M.: High-order buckling analysis of sandwich beams with transversely flexible core. J. Eng. Mech. 119(3), 476–495 (1993). https://doi.org/10.1061/(ASCE)0733-9399(1993)119:3(476)
Allen, H.D.: Chapter 5 - Bending and Buckling of Isotropic Sandwich Panels with Very Thin Identical Faces (Ritz Method). In: Analysis and Design of Structural Sandwich Panels, pp. 76–98. Pergamon (1969). https://doi.org/10.1016/B978-0-08-012870-2.50009-2
Ji, W., Waas, A.M.: Global and local buckling of a sandwich beam. J. Eng. Mech. 133(2), 230–237 (2007) https://doi.org/10.1061/(ASCE)0733-9399(2007)133:2(230)
Fleck, N.A., Sridhar, I.: End compression of sandwich columns. Compos. Part A Appl. Sci. Manuf. 33(3), 353–359 (2002). https://doi.org/10.1016/S1359-835X(01)00118-X
Huang, H., Kardomateas, G.A.: Buckling and initial postbuckling behavior of sandwich beams including transverse shear. AIAA J. 40(11), 2331–2335 (2002). https://doi.org/10.2514/2.1571
Yu, Y., Sun, Y., Zang, L.: Analytical solution for initial postbuckling deformation of the sandwich beams including transverse shear. J. Eng. Mech. 139(8), 1084–1090 (2013). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000469
Douville, M.-A., Le Grognec, P.: Exact analytical solutions for the local and global buckling of sandwich beam-columns under various loadings. Int. J. Solids Struct. 50(16–17), 2597–2609 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.013
Rezaiee-Pajand, M., Shahabian, F., Tavakoli, F.H.: Delamination detection in laminated composite beams using hybrid elements. Compos. Struct. 94(9), 2777–2792 (2012). https://doi.org/10.1016/j.compstruct.2012.04.014
Yiatros, S., Wadee, M.A., Völlmecke, C.: Modeling of interactive buckling in sandwich struts with functionally graded cores. J. Eng. Mech. 139(8), 952–960 (2013). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000470
Huang, Y., Li, X.-F.: Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity. J. Eng. Mech. 137(1), 73–81 (2011). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206
Rezaiee-Pajand, M., Masoodi, A.R.: Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections. J. Vib. Control. 24(9), 1787–1808 (2018). https://doi.org/10.1177/1077546316668932
Huang, Y., Zhang, M., Rong, H.: Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko Theory. Acta Mech. Solida Sin. 29(2), 200–207 (2016). https://doi.org/10.1016/S0894-9166(16)30108-2
Rajasekaran, S.: Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica. 48(5), 1053–1070 (2013). https://doi.org/10.1007/s11012-012-9651-1
Ávila, A.F.: Failure mode investigation of sandwich beams with functionally graded core. Compos. Struct. 81(3), 323–330 (2007). https://doi.org/10.1016/j.compstruct.2006.08.030
Rezaiee-Pajand, M., Shahabian, F., Tavakoli, F.H.: (2014) Delamination detection in buckling laminated composite plates. Proc. Inst. Civil Eng. Eng. Comput. Mech. 167(2), 67–81. https://doi.org/10.1680/eacm.13.00020
Singh, K.V., Li, G.: Buckling of functionally graded and elastically restrained non-uniform columns. Compos Part B Eng. 40(5), 393–403 (2009). https://doi.org/10.1016/j.compositesb.2009.03.001
Osofero, A.I., Vo, T.P., Nguyen, T.-K., Lee, J.: Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories. J. Sandwich Struct. Mater (2015). https://doi.org/10.1177/1099636215582217
Khalili, S.M.R., Damanpack, A.R., Nemati, N., Malekzadeh, K.: Free vibration analysis of sandwich beam carrying sprung masses. Int. J. Mech. Sci. 52(12), 1620–1633 (2010). https://doi.org/10.1016/j.ijmecsci.2010.08.003
Kubenko, V.D., Pleskachevskii, Y.M., Starovoitov, ÉI., Leonenko, D.V.: Natural vibration of a sandwich beam on an elastic foundation. Int. Appl. Mech. 42(5), 541–547 (2006). https://doi.org/10.1007/s10778-006-0118-8
Nguyen, T.-K., Nguyen, B.-D.: (2015) A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J. Sandwich Struct. Mater. https://doi.org/10.1177/1099636215589237
Ying, J., Lü, C.F., Chen, W.Q.: Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos. Struct. 84(3), 209–219 (2008). https://doi.org/10.1016/j.compstruct.2007.07.004
Şimşek, M., Al-shujairi, M.: Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Compos. Part B Eng. 108, 18–34 (2017). https://doi.org/10.1016/j.compositesb.2016.09.098
Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B Eng. 42(4), 801–808 (2011). https://doi.org/10.1016/j.compositesb.2011.01.017
Rezaiee Pajand, M., Hozhabrossadati, S.M.: Analytical and numerical method for free vibration of double-axially functionally graded beams. Compos. Struct. 152, 488–498 (2016). https://doi.org/10.1016/j.compstruct.2016.05.003
Khdeir, A.A., Aldraihem, O.J.: Free vibration of sandwich beams with soft core. Compos. Struct. 154, 179–189 (2016). https://doi.org/10.1016/j.compstruct.2016.07.045
Rezaiee-Pajand, M., Masoodi Amir, R., Mokhtari, M.: Static analysis of functionally graded non-prismatic sandwich beams. Adv. Comput. Design Int. J. 3(2), 165–190 (2018). https://doi.org/10.12989/acd.2018.3.2.165
Zaitsev, V.F., Polyanin, A.D.: (2002) Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press. ISBN 9781584882978
Aydogdu, M.: Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Compos. Sci. Technol. 66(10), 1248–1255 (2006). https://doi.org/10.1016/j.compscitech.2005.10.029
Aydogdu, M.: Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int. J. Mech. Sci. 47(11), 1740–1755 (2005). https://doi.org/10.1016/j.ijmecsci.2005.06.010
Karnovskiĭ, I.A., Lebed, O.I.: Free Vibrations of Beams and Frames: Eigenvalues and Eigenfunctions. McGraw-Hill (2004)