Stability and crystal chemistry of iron-bearing dense hydrous magnesium silicates

Geochemistry - Tập 74 - Trang 489-496 - 2014
Geertje Ganskow1, Falko Langenhorst1,2
1Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
2Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany

Tài liệu tham khảo

Bibring, 2006, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400, 10.1126/science.1122659 Boffa-Ballaran, 2010, The structure of a super-aluminous version of the dense hydrous-magnesium silicate phase D, Am. Mineral., 95, 1113, 10.2138/am.2010.3462 Carr, 2010, Geologic history of Mars, Earth Planet. Sci. Lett., 294, 185, 10.1016/j.epsl.2009.06.042 Frost, 1999, The stability of dense hydrous magnesium silicates in Earth's transition zone and lower mantle, vol. 6, 283 Frost, 2003, Fe2+–Mg partitioning between garnet, magnesiowüstite, and (Mg,Fe)2SiO4 phases of the transition zone, Am. Mineral., 88, 387, 10.2138/am-2003-2-315 Frost, 1998, Stability of phase D at high pressure and high temperature, J. Geophys. Res., 103, 7463, 10.1029/98JB00077 Frost, 2001, Fe–Mg partitioning between ringwoodite and magnesiowüstite and the effect of pressure, temperature and oxygen fugacity, Phys. Chem. Miner., 28, 455, 10.1007/s002690100181 Kagi, 2000, Hydrogen bonding interactions in Phase A (Mg7Si2O8(OH)6) at ambient and high pressure, Phys. Chem. Miner., 27, 225, 10.1007/s002690050251 Kawamoto, 2004, Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions, Phys. Earth Planet. Interior., 143–144, 387, 10.1016/j.pepi.2003.06.003 Kurokawa, 2014, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites, Earth Planet. Sci. Lett., 394, 179, 10.1016/j.epsl.2014.03.027 Langenhorst, 2002, ATEM-EELS study of new diamond-like phases in the B–C–N system, Phys. Chem. Chem. Phys., 4, 5183, 10.1039/B206691B McSween, 2009, Elemental composition of the Martian crust, Science, 324, 736, 10.1126/science.1165871 Ohtani, 1997, A new hydrous silicate, a water reservoir, in the upper part of the lower mantle, Geophys. Res. Lett., 24, 1047, 10.1029/97GL00874 Ohtani, 2000, Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27GPa, Phys. Chem. Miner., 27, 533, 10.1007/s002690000097 Pacalo, 1992, Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400°C and 20GPa, Am. Mineral., 77, 681 Shieh, 1998, Decomposition of phase D at lower mantle and the fate of dense hydrous magnesium silicates in subducting slabs, Earth Planet. Sci. Lett., 159, 13, 10.1016/S0012-821X(98)00062-4 Stoyanov, 2014, The effect of valence state and site geometry on Cr L3,2 electron energy-loss spectra of Cr-bearing oxidic compounds, Chem. Erde, 10.1016/j.chemer.2014.06.005 Ulmer, 1995, Serpentine stability to mantle depths and subduction-related magmatism, Science, 268, 858, 10.1126/science.268.5212.858 van Aken, 1998, Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy, Phys. Chem. Miner., 25, 323, 10.1007/s002690050122 Walter, 1995, Characterizing experimental pressure and temperature conditions in multi-anvil apparatus, Can. J. Phys., 73, 273, 10.1139/p95-039 Wänke, 1988, Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. Lond., A325, 545, 10.1098/rsta.1988.0067 Yamamoto, 1974, High-pressure and high-temperature investigations in the system MgO-SiO2-H2O, J. Solid State Chem., 9, 187, 10.1016/0022-4596(74)90073-5 Yang, 1997, Crystal structure of the dense hydrous magnesium silicate, phase D, Am. Mineral., 82, 651, 10.2138/am-1997-5-627