Stability and bifurcation of a prey–predator model with time delay

Cellule MathDoc/Centre Mersenne - Tập 332 Số 7 - Trang 642-651
T. K. Kar1, Ashim Batabyal2
1Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah 711103, India
2Department of Mathematics, Bally Nischinda Chittaranjan Vidyalaya, Bally Ghoshpara, Howrah, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

[1] Berryman, A.A. The origins and evolutions of predator–prey theory, Ecology, Volume 73 (1992), pp. 1530-1535

[2] Gopalsamy, K. Stability on the Oscillations in Delay Differential Equations of Population Dynamics, Academic Press, New York, 1993

[3] Kuang, Y. Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993

[4] Freedman, H.I.; Rao, V.S.H. The trade-off between mutual interference and time lags in predator–prey systems, Bull. Math. Biol., Volume 45 (1983), pp. 991-1004

[5] Freedman, H.I.; Waltman, P. Persistence in models of three interacting predator–prey populations, Math. Biosci., Volume 68 (1984), pp. 213-231

[6] Kuang, Y. Global stability of Gauss-type predator–prey systems, J. Math. Biol., Volume 28 (1990), pp. 463-474

[7] Hale, J.K.; Waltman, P. Persistence in finite-dimensional systems, SIAM J. Math. Anal., Volume 20 (1989), pp. 388-395

[8] Waltman, P. A Brief Survey of Persistence in Dynamical Systems, Springer, Berlin, 1991 (pp. 31–40)

[9] Wang, W.D.; Ma, Z.E. Harmless delays for uniform persistence, J. Math. Anal. Appl., Volume 158 (1991), pp. 256-268

[10] Lu, Z.; Takeuchi, Y. Permanence and global attractivity for competitive Lotka–Volterra system with delay, J. Nonlinear Anal. TMA, Volume 22 (1994), pp. 847-856

[11] Aziz-Alaoui, M.A.; Daher Okiye, M. Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemes, Appl. Math. Lett., Volume 16 (2003), pp. 1069-1075

[12] Cao, Y.; Freedman, H.I. Global attractivity in time-delayed predator–prey system, J. Austral. Math. Ser. B, Volume 38 (1996), pp. 149-162

[13] Upadhyay, R.K.; Rai, V. Crisis-limited chaotic dynamics in ecological systems, Chaos Solutions Fractals, Volume 12 (2001) no. 2, pp. 205-218

[14] Upadhyay, R.K.; Iyenger, S.R.K. Effect of seasonality on the dynamics of 2 and 3 species prey–predator system, Nonlinear Anal.: Real World Appl., Volume 6 (2005), pp. 509-530

[15] Xiao, Y.; Chen, L. Modelling and analysis of a predator–prey model with disease in the prey, Mathematical Biosciences, Volume 171 (2001), pp. 59-82

[16] Mukherjee, D.; Roy, A.B. Uniform persistence and global attractivity theorem for generalized prey–predator system with time delay, Nonlinear Analysis, Volume 38 (1999), pp. 59-74

[17] Kar, T.K. Selective harvesting in a prey–predator fishery with time delay, Math. Comput. Model, Volume 38 (2003), pp. 449-458

[18] Ruan, S.; Ardito, A.; Ricciardi, P.; De Angelis, D.L. Coexistence in competition models with density dependent mortality, C. R. Biologies, Volume 330 (2007), pp. 845-854

[19] MacDonald, N. Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989

[20] Birkhoff, G.; Rota, G.C. Ordinary Differential Equations, Ginn, Boston, 1982

[21] Liu, W.M. Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl., Volume 182 (1994), pp. 250-256

[22] Hudson, P.J.; Dobson, A.P.; Newborn, D. Prevention of population cycles by parasite removal, Science, Volume 282 (1998), pp. 2256-2258