Stability and bifurcation of a prey–predator model with time delay
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Berryman, A.A. The origins and evolutions of predator–prey theory, Ecology, Volume 73 (1992), pp. 1530-1535
[2] Gopalsamy, K. Stability on the Oscillations in Delay Differential Equations of Population Dynamics, Academic Press, New York, 1993
[3] Kuang, Y. Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993
[4] Freedman, H.I.; Rao, V.S.H. The trade-off between mutual interference and time lags in predator–prey systems, Bull. Math. Biol., Volume 45 (1983), pp. 991-1004
[5] Freedman, H.I.; Waltman, P. Persistence in models of three interacting predator–prey populations, Math. Biosci., Volume 68 (1984), pp. 213-231
[6] Kuang, Y. Global stability of Gauss-type predator–prey systems, J. Math. Biol., Volume 28 (1990), pp. 463-474
[7] Hale, J.K.; Waltman, P. Persistence in finite-dimensional systems, SIAM J. Math. Anal., Volume 20 (1989), pp. 388-395
[8] Waltman, P. A Brief Survey of Persistence in Dynamical Systems, Springer, Berlin, 1991 (pp. 31–40)
[9] Wang, W.D.; Ma, Z.E. Harmless delays for uniform persistence, J. Math. Anal. Appl., Volume 158 (1991), pp. 256-268
[10] Lu, Z.; Takeuchi, Y. Permanence and global attractivity for competitive Lotka–Volterra system with delay, J. Nonlinear Anal. TMA, Volume 22 (1994), pp. 847-856
[11] Aziz-Alaoui, M.A.; Daher Okiye, M. Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II schemes, Appl. Math. Lett., Volume 16 (2003), pp. 1069-1075
[12] Cao, Y.; Freedman, H.I. Global attractivity in time-delayed predator–prey system, J. Austral. Math. Ser. B, Volume 38 (1996), pp. 149-162
[13] Upadhyay, R.K.; Rai, V. Crisis-limited chaotic dynamics in ecological systems, Chaos Solutions Fractals, Volume 12 (2001) no. 2, pp. 205-218
[14] Upadhyay, R.K.; Iyenger, S.R.K. Effect of seasonality on the dynamics of 2 and 3 species prey–predator system, Nonlinear Anal.: Real World Appl., Volume 6 (2005), pp. 509-530
[15] Xiao, Y.; Chen, L. Modelling and analysis of a predator–prey model with disease in the prey, Mathematical Biosciences, Volume 171 (2001), pp. 59-82
[16] Mukherjee, D.; Roy, A.B. Uniform persistence and global attractivity theorem for generalized prey–predator system with time delay, Nonlinear Analysis, Volume 38 (1999), pp. 59-74
[17] Kar, T.K. Selective harvesting in a prey–predator fishery with time delay, Math. Comput. Model, Volume 38 (2003), pp. 449-458
[18] Ruan, S.; Ardito, A.; Ricciardi, P.; De Angelis, D.L. Coexistence in competition models with density dependent mortality, C. R. Biologies, Volume 330 (2007), pp. 845-854
[19] MacDonald, N. Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989
[20] Birkhoff, G.; Rota, G.C. Ordinary Differential Equations, Ginn, Boston, 1982
[21] Liu, W.M. Criterion of Hopf bifurcation without using eigenvalues, J. Math. Anal. Appl., Volume 182 (1994), pp. 250-256