Stability analysis of plates using cut Bogner-Fox-Schmit elements
Tài liệu tham khảo
Bogner FK, Fox RL, Schmit LA. The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae. In: Proceedings of the 1st conference on matrix methods in structural mechanics; 1965. p. 397–444.
Vetyukov, 2014, Finite element modeling of Kirchhoff-Love shells as smooth material surfaces, ZAMM, 94, 150, 10.1002/zamm.201200179
Parvizian, 2007, Finite cell method: h- and p-extension for embedded domain problems in solid mechanics, Comput Mech, 41, 121, 10.1007/s00466-007-0173-y
Düster A, Rank E, Szabó B. The p-Version of the Finite Element and Finite Cell Methods, John Wiley & Sons; 2018, Ch. 4. p. 1–55. doi:10.1002/0470091355.
Duy R. Fictitious domain approach for optimizing stability boundaries of plates with cutouts, Master’s thesis, Vienna University of Technology; 2021. doi:10.34726/hss.2021.70501.
Burman, 2020, Cut Bogner-Fox-Schmit elements for plates, Adv Model Simul Eng Sci, 7, 1, 10.1186/s40323-020-00164-3
Gracia, 2019, Increase in buckling loads of plates by introduction of cutouts, Acta Mech, 230, 2873, 10.1007/s00707-019-02435-6
Zienkiewicz OC, Taylor RL. The Finite Element Method – Volume 2: Solid Mechanics, Butterworth Heinemann; 2000.
Vetyukov Y. Nonlinear Mechanics of Thin-Walled Structures. Asymptotics, Direct Approach and Numerical Analysis, Foundations of Engineering Mechanics, Springer, Vienna; 2014. doi:10.1007/978-3-7091-1777-4.
de Prenter, 2017, Condition number analysis and preconditioning of the finite cell method, Comput Methods Appl Mech Eng, 316, 297, 10.1016/j.cma.2016.07.006
de Prenter F, Verhoosel CV, van Brummelen EH, Evans JA, Messe C, Benzaken J, Maute K. Multigrid solvers for immersed finite element methods and immersed isogeometric analysis. Comput Mech. doi:10.1007/s00466-019-01796-y.
Burman, 2012, Fictitious domain finite element methods using cut element: II. A stabilized Nitsche method, Appl Numer Math, 62, 328, 10.1016/j.apnum.2011.01.008
Reissner, 1976, On the theory of transverse bending of elastic plates, Int J Solids Struct, 12, 545, 10.1016/0020-7683(76)90001-9
Elishakoff I. Handbook on Timoshenko–Ehrenfest beam and Uflyand–Mindlin plate theories, World Scientific; 2020. doi:10.1142/9789813236523_0002.
Brezzi, 1989, Mixed-interpolated elements for Reissner-Mindlin plates, Int J Numer Meth Eng, 28, 1787, 10.1002/nme.1620280806
Durán, 1992, On mixed finite element methods for the Reissner-Mindlin plate model, Math Comput, 58, 561, 10.2307/2153202
Batoz, 1980, A study of three-node triangular plate bending elements, Int J Numer Meth Eng, 15, 1771, 10.1002/nme.1620151205
Dassault Systemes Simulia Corp., Providence, RI, USA, ABAQUS Theory Manual, vol 6.6, section 3.6.4; 2009. https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/stm/ch03s06ath82.html.
Noels, 2009, A discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells, Int J Numer Meth Eng, 78, 296, 10.1002/nme.2489
Ludwig, 2019, Rotation-free Bernstein-Bézier elements for thin plates and shells–development and validation, Comput Methods Appl Mech Eng, 348, 500, 10.1016/j.cma.2019.01.039
Dufva, 2005, Analysis of thin plate structure using the absolute nodal coordinate formulation, IMechE J Multi-body Dynam, 219, 345
Schwab AL, Gerstmayr J, Meijaard JP. Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007; 2007. p. 12. doi:10.1115/DETC2007-34754.
Argyris, 1968, The TUBA family of plate elements for the matrix displacement method, Aeronaut J, 72, 701, 10.1017/S000192400008489X
Ivannikov, 2015, Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model, Comput Methods Appl Mech Eng, 294, 210, 10.1016/j.cma.2015.05.018
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff-Love elements, Comput Methods Appl Mech Eng, 198, 3902, 10.1016/j.cma.2009.08.013
Cirak, 2001, Fully C1-conforming subdivision elements for finite deformation thin-shell analysis, Int J Numer Meth Eng, 51, 813, 10.1002/nme.182.abs
Timoshenko, 1959
Vetyukov, 2011, Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates, Int J Solids Struct, 48, 12, 10.1016/j.ijsolstr.2010.09.001
Eliseev, 2014, Theory of shells as a product of analytical technologies in elastic body mechanics, Vol. 3, 81
Naghdi, 1983, A theory of shells with small strain accompanied by moderate rotation, Arch Rational Mech Anal, 83, 245, 10.1007/BF00251511
Clebsch A. Théorie de l’élasticité des corps solides, Dunod, 1883, translated into French by Barré de Saint-Venant.
Timoshenko S, Gere J. Theory of Elastic Stability, 2nd Edition, McGraw-Hill, New-York; 1961, Ch. 5. p. 212–250.
Anderson, 1968, Vibration and stability of plates using finite elements, Int J Solids Struct, 4, 1031, 10.1016/0020-7683(68)90021-8
De Borst, 2012
Joulaian, 2013, Local enrichment of the finite cell method for problems with material interfaces, Comput Mech, 52, 741, 10.1007/s00466-013-0853-8
Joulaian, 2016, Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput Mech, 57, 979, 10.1007/s00466-016-1273-3
Duczek, 2015, Efficient integration method for fictitious domain approaches, Comput Mech, 56, 725, 10.1007/s00466-015-1197-3
Fries, 2016, Higher-order accurate integration of implicit geometries, Int J Numer Meth Eng, 106, 323, 10.1002/nme.5121
Kudela, 2016, Smart octrees: Accurately integrating discontinuous functions in 3d, Comput Methods Appl Mech Eng, 306, 406, 10.1016/j.cma.2016.04.006
Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E. Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10; 2013. 24pp. doi:10.1142/s0219876213500023.
Petö, 2020, Enhanced numerical integration scheme based on image compression techniques: Application to fictitious domain methods, Adv Model Simul Eng Sci, 7, 1
Schillinger D, Cai Q, Mundani RP, Rank E. A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-based Geometric Models, Springer Verlag; 2013, Ch. A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-based Geometric Models, pp. 1–23. doi:10.1007/978-3-642-38762-3_1.
Schillinger, 2015, The finite cell method: A review in the context of high-order structural analysis of CAD and image-based geometric models, Arch Comput Methods Eng, 22, 391, 10.1007/s11831-014-9115-y
Dauge, 2015, Theoretical and numerical investigation of the finite cell method, J Sci Comput, 65, 1039, 10.1007/s10915-015-9997-3
Hughes, 2005, Isogeometric analysis: CAD, finite elements. NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput Methods Appl Mech Eng, 195, 5257, 10.1016/j.cma.2005.09.027
Kiendl, 2015, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials, Comput Methods Appl Mech Eng, 291, 280, 10.1016/j.cma.2015.03.010
Kim, 2010, Isogeometric analysis with trimming technique for problems of arbitrary complex topology, Comput Methods Appl Mech Eng, 199, 2796, 10.1016/j.cma.2010.04.015
Breitenberger, 2015, Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures, Comput Methods Appl Mech Eng, 284, 401, 10.1016/j.cma.2014.09.033
Beer, 2015, A simple approach to the numerical simulation with trimmed CAD surfaces, Comput Methods Appl Mech Eng, 285, 776, 10.1016/j.cma.2014.12.010
Guo, 2019, Isogeometric stability analysis of thin shells: From simple geometries to engineering models, Int J Numer Meth Eng, 118, 433, 10.1002/nme.6020
Kiendl, 2010, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches, Comput Methods Appl Mech Eng, 199, 2403, 10.1016/j.cma.2010.03.029
Herrema, 2019, Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades, Comput Methods Appl Mech Eng, 346, 810, 10.1016/j.cma.2018.08.038
Guo, 2015, Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures, Comput Methods Appl Mech Eng, 284, 881, 10.1016/j.cma.2014.11.014
Brivadis, 2015, Isogeometric mortar methods, Comput Methods Appl Mech Eng, 284, 292, 10.1016/j.cma.2014.09.012
Horger, 2019, A hybrid isogeometric approach on multi-patches with applications to kirchhoff plates and eigenvalue problems, Comput Methods Appl Mech Eng, 348, 396, 10.1016/j.cma.2018.12.038
Chow FY, Narayanan R. Buckling of plates containing openings. In: Proceedings of the 7th International Specialty Conference on Cold-Formed Steel Structures; 1984. p. 39–53.
Ruess, 2013, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int J Numer Meth Eng, 95, 811, 10.1002/nme.4522
Kollmannsberger, 2015, Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches, Int J Numer Meth Eng, 101, 670, 10.1002/nme.4817
de Prenter, 2018, A note on the penalty parameter in Nitsche’s method for unfitted boundary value problems, Comput Math Appl, 75, 4322, 10.1016/j.camwa.2018.03.032
Sukumar, 2001, Modeling holes and inclusions by level sets in the extended finite-element method, Comput Methods Appl Mech Eng, 190, 6183, 10.1016/S0045-7825(01)00215-8
Rees DWA. Plate Buckling Under Uniaxial Compression, John Wiley & Sons Ltd; 2009, Ch. Appendix B, pp. 525–535. doi: 10.1002/9780470749784.app2.
Rees DWA. Plate Buckling Under Biaxial Compression and Shear, John Wiley & Sons Ltd; 2009, Ch. Appendix C, pp. 537–541. doi: 10.1002/9780470749784.app3.
Buckling of flat plates in shear, Standard, Engineering Sciences Data Unit, Denver, USA; Feb. 1971.
Savitzky, 1964, Smoothing and differentiation of data by simplified least squares procedures, Anal Chem, 36, 1627, 10.1021/ac60214a047
Scheidl, 2021, Mixed Eulerian-Lagrangian shell model for lateral run-off in a steel belt drive and its experimental validation, Int J Mech Sci, 106572, 10.1016/j.ijmecsci.2021.106572