Spreading sequences in active sensing: A review
Tài liệu tham khảo
Tang, 2009, A macro-cell statistical location estimation method for TD-SCDMA networks, Signal Process., 89, 1851, 10.1016/j.sigpro.2009.03.012
Jung-Lang, 2005, Blind channel estimation for MC-CDMA systems with long spreading codes, Signal Process., 85, 1898, 10.1016/j.sigpro.2005.04.002
Gross, 2008, A new digital beamforming approach for SDMA using spreading sequence array weights, Signal Process., 88, 2425, 10.1016/j.sigpro.2008.04.002
W. Kim, H.K. Chung, K.C. Lee, H. Jeon, J. Cha, H. Lee, LS codes aided channel estimation for MIMO-OFDM systems in multipath environment, in: Proceedings of 2006 Vehicular Technology Conference, 2006, pp. 1–5.
Gao, 2013, Adaptive binary spreading sequence assignment using semidefinite relaxation, IEEE Wirel. Commun. Lett., 2, 94, 10.1109/WCL.2012.120312.120518
Spasojevic, 2001, Complementary sequences for ISI channel estimation, IEEE Trans. Inf. Theory, 47, 1145, 10.1109/18.915670
Turin, 1960, An introduction to matched filters, IRE Trans. Inf. Theory, 6, 311, 10.1109/TIT.1960.1057571
Ackroyd, 1973, Optimum mismatched filters for sidelobe suppression, IEEE Trans. Aerosp. Electron. Syst., 9, 214, 10.1109/TAES.1973.309769
Knapp, 1976, The generalized correlation method for estimation of time delay, IEEE Trans. Audio Electroacoust., 24, 320
Azaria, 1984, Time delay estimation by generalized cross correlation methods, IEEE Trans. Audio Electroacoust., 32, 320
Sivaswamy, 1978, Digital and analog subcomplementary sequences for pulse compression, IEEE Trans. Aerosp. Electron. Syst., 14, 343, 10.1109/TAES.1978.308657
Pezeshki, 2008, Doppler resilient Golay complementary waveforms, IEEE Trans. Inf. Theory, 54, 4254, 10.1109/TIT.2008.928292
Stoica, 2008, Transmit codes and receive filters for radar, IEEE Signal Process. Mag., 25, 94, 10.1109/MSP.2008.929231
Soltanalian, 2013, Joint design of the receive filter and transmit sequence for active sensing, IEEE Signal Process. Lett., 20, 423, 10.1109/LSP.2013.2250279
Turin, 1976, An introduction to digital matched filters, Proc. IEEE, 64, 1092, 10.1109/PROC.1976.10274
Proakis, 1996
Rihaczek, 1971, Range sidelobe suppression for Barker codes, IEEE Trans. Aerosp. Electron. Syst., 7, 1087, 10.1109/TAES.1971.310209
Griep, 1995, Poly-phase codes and optimal filter for multiple user ranging, IEEE Trans. Aerosp. Electron. Syst., 31, 752, 10.1109/7.381922
Levanon, 2005, Cross-correlation of long binary signals with longer mismatched filters, IEE Proc. Radar Sonar Navig., 152, 377, 10.1049/ip-rsn:20050024
D.P. Scholnik, Optimal filters for range-time sidelobe suppression, in: X European Signal Processing Conference (EUSIPCO), 2000.
Green, 1984, Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives, J. R. Stat. Soc. Ser. B (Methodol.), 46, 149
Zejak, 1991, Doppler optimized mismatched filters, Electron. Lett., 27, 558, 10.1049/el:19910352
Misaridis, 2005, Use of modulated excitation signals in medical ultrasound. Part I, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 177, 10.1109/TUFFC.2005.1406545
Chen, 2007
Leavens, 2009, The use of phase codes in ultrasound imaging, Appl. Acoust., 70, 1340, 10.1016/j.apacoust.2008.10.005
Calderbank, 2009, Waveform diversity in radar signal processing, IEEE Signal Process. Mag., 1, 32, 10.1109/MSP.2008.930414
Bell, 1993, Information theory and radar waveform design, IEEE Trans. Inf. Theory, 39, 1578, 10.1109/18.259642
Roberts, 2010, Probing waveform synthesis and receiver filter design, IEEE Signal Process. Mag., 27, 99, 10.1109/MSP.2010.936724
He, 2012
Naghsh, 2014, A Doppler robust design of transmit sequence and receive filter in the presence of signal-dependent interference, IEEE Trans. Signal Process., 62, 772, 10.1109/TSP.2013.2288082
Seberry, 1992, 431
Hunt, 2012, The construction of orthogonal variable spreading factor codes form semi-bent functions, IEEE Trans. Wirel. Commun., 11, 2970
Smith, 2010, Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices, IEEE Trans. Inf. Theory, 56, 5757, 10.1109/TIT.2010.2070310
J. Jedwab, A survey of the merit factor problem for binary sequences, in: Proceedings of 3rd International Conference on Sequences and their Applications (SETA ׳04), Springer-Verlag Berlin, 2004, pp. 30–55.
Turyn, 1961, On binary sequences, Proc. Am. Math. Soc., 12, 394, 10.1090/S0002-9939-1961-0125026-2
Turyn, 1968, Sequences with small correlation, 195
Golomb, 2005
Lahtonen, 1995, On the odd and the aperiodic correlation properties of the Kasami sequences, IEEE Trans. Inf. Theory, 41, 1506, 10.1109/18.412698
Sun, 2011, Aperiodic correlation of Kasami sequences in the small set, Appl. Algebra Eng. Commun. Comput., 4, 311, 10.1007/s00200-011-0152-6
Diego, 2011, Ultrasonic array for obstacle detection based on CDMA with Kasami codes, Sensors, 11, 11464, 10.3390/s111211464
J.M. Villadangos, J. Ureña, M. Mazo, A. Hernández, C. De Marziani, M.C. Pérez, F.J. Álvarez, J.J. García, A. Jiménez, I. Gude, Ultrasonic local positioning system with large covered area, in: Proceedings of 2007 IEEE International Symposium on Intelligent Signal Processing (WISP ׳07), 2007, pp. 1–6.
Álvarez, 2013, Doppler-tolerant receiver for an ultrasonic LPS based on Kasami sequences, Sens. Actuators A, 189, 238, 10.1016/j.sna.2012.09.029
Feigenbaum, 1978, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25, 10.1007/BF01020332
Lorenz, 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Rössler, 1976, An equation for continuous chaos, Phys. Lett., 57A, 397, 10.1016/0375-9601(76)90101-8
Varadan, 2002, Design of piecewise maps for chaotic spread-spectrum communications using genetic programming, IEEE Trans. Circuits Syst. I, 49, 1543, 10.1109/TCSI.2002.804545
X. Wang, M. Zhan, Y.-C. Lai, X. Gong, C.H. Lai, Spread-spectrum communication using binary spatiotemporal chaotic codes, Phys. Lett. A 334 (2005) 30–36.
Sandoval-Morantes, 1998, Chaotic sequences for multiple access, Electron. Lett., 34, 235, 10.1049/el:19980132
Chong, 2005, UWB direct chaotic communication technology, IEEE Antennas Wirel. Propag. Lett., 4, 316, 10.1109/LAWP.2005.855632
L.O. Chua, The Genesis of Chua׳s Circuit, UCB/ERL M92/1, EECS Department, University of California, Berkeley, 1992. URL: 〈http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/1924.html〉.
Golay, 1961, Complementary series, IRE Trans. Inf. Theory, 7, 82, 10.1109/TIT.1961.1057620
Golay, 1962, Note on ‘Complementary series’, Proc. IRE, 50, 84
Jauregui, 1962, Complementary sequences of length 26 (Corresp.), IRE Trans. Inf. Theory, 8, 323, 10.1109/TIT.1962.1057733
Borwein, 2003, A complete description of Golay pairs for lengths up to 100, Math. Comput., 73, 967, 10.1090/S0025-5718-03-01576-X
Jedwab, 2009, A construction of binary sequence pairs from odd-length Barker sequences, J. Combin. Designs, 17, 478, 10.1002/jcd.20222
Budišin, 2011, Golay kernel 10 decomposition, Electron. Lett., 47, 853, 10.1049/el.2011.1327
E. García, J. Ureña, J.J. García, D. Ruiz, M.C. Pérez, J.C. García, Efficient filter for the generation/correlation of Golay binary sequence pairs, Int. J. Circuit Theory Appl. 10.1002/cta.1901, in press
Taki, 1969, Even-shift orthogonal sequences, IEEE Trans. Inf. Theory, 15, 295, 10.1109/TIT.1969.1054284
Turyn, 1974, Hadamard matrices, Baumert–Hall units, four-symbol sequences, pulse compression, and surface wave encodings, J. Combin. Theory Ser. A, 17, 313, 10.1016/0097-3165(74)90056-9
Tseng, 1972, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18, 644, 10.1109/TIT.1972.1054860
García, 2013, Efficient architectures for the generation and correlation of binary CSS derived from different kernel lengths, IEEE Trans. Signal Process., 61, 4717, 10.1109/TSP.2013.2273883
Li, 2010, Optimisation of complete complementary codes in MIMO radar system, Electron. Lett., 46, 1157, 10.1049/el.2010.1394
J.D.H. White, R.E. Challis, A Golay sequencer based NDT system for highly attenuating materials, in: Proceedings of IEE Colloquium Non-Contacting and Remote NDT, 1992, pp. 7/1–7/7.
Davis, 1999, Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed–Muller codes, IEEE Trans. Inf. Theory, 45, 2397, 10.1109/18.796380
He, 2011, Preamble design using embedded signaling for OFDM broadcast systems based on reduced complexity distance detection, IEEE Trans. Veh. Technol., 60, 1217, 10.1109/TVT.2011.2110664
Suehiro, 1988, N-shift cross-orthogonal sequences, IEEE Trans. Inf. Theory, 34, 143, 10.1109/18.2615
H.-H. Chen, Design of perfect complementary codes to implement interference free CDMA systems, in: Proceedings of 2004 IEEE Global Telecommunications Conference (GOBLECOM׳04), vol. 2, 2004, pp. 1096–1100.
Chen, 2001, A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications, IEEE Commun. Mag., 39, 126, 10.1109/35.956124
Pérez, 2008, Efficient correlator for LS codes generated from orthogonal CSS, IEEE Commun. Lett., 12, 764, 10.1109/LCOMM.2008.081000
Fan, 1996, 311
Sivaswamy, 1982, Self-clutter cancellation and ambiguity properties of subcomplementary sequences, IEEE Trans. Aerosp. Electron. Syst., 18, 163, 10.1109/TAES.1982.309223
Popovic, 1987, Generalised subcomplementary sets of sequences, Electron. Lett., 23, 422, 10.1049/el:19870306
Tang, 2001, A class of pseudonoise sequences over GF(P) with low correlation zone, IEEE Trans. Inf. Theory, 47, 1644, 10.1109/18.923753
Welch, 1974, Lower bounds on the maximum cross correlation of signals (Corresp.), IEEE Trans. Inf. Theory, 20, 397, 10.1109/TIT.1974.1055219
Levenshtein, 1999, New lower bounds on aperiodic crosscorrelation of binary codes, IEEE Trans. Inf. Theory, 45, 284, 10.1109/18.746818
Sarwate, 1979, Bounds on crosscorrelation and autocorrelation of sequences (Corresp.), IEEE Trans. Inf. Theory, 25, 720, 10.1109/TIT.1979.1056116
Tang, 2001, Bounds on aperiodic and odd correlations of spreading sequences with low and zero correlation zone, Electron. Lett., 37, 1021, 10.1049/el:20010801
Fan, 2007, Z-complementary binary sequences, IEEE Signal Process. Lett., 14, 509, 10.1109/LSP.2007.891834
Li, 2011, Existence of binary Z-complementary pairs, IEEE Signal Process. Lett., 18, 63
Z. Liu, Y. Liang Guan, U. Parampalli, On optimal binary Z-complementary pair of odd period, in: IEEE International Symposium on Information Theory, 2013.
Liu, 2014, On even-period binary Z-complementary pairs with large ZCZs, IEEE Signal Process. Lett., 21, 284, 10.1109/LSP.2014.2300163
D. Li, LAS-CDMA Meeting, Technical Report, Third Generation Partnership Project 2, CWTS, WG-1, April 10, 2000.
D. Li, A method for spread spectrum multiple access coding with zero correlation window, European Patent: EP 1257077, 2002.
S. Stanczak, H. Boche, M. Haardt, Are LAS-codes a miracle?, in: Proceedings of 2001 IEEE Global Telecommunications Conference (GLOBECOM ׳01), vol. 1, 2001, pp. 589–593. http://dx.doi.org/10.1109/GLOCOM.2001.965185.
Zhang, 2005, General method to construct LS codes by complete complementary sequences, IEICE Trans. Commun. E, 88-B, 3484, 10.1093/ietcom/e88-b.8.3484
Tang, 2006, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE J. Sel. Areas Commun., 24, 84, 10.1109/JSAC.2005.858877
K. Yang, Y.K. Kim, P.V. Kumar, Quasi-orthogonal sequences for code-division multiple-access systems, IEEE Trans. Inf. Theory 46 (2000) 982–993.
Kerdock, 1972, A class of low-rate nonlinear binary codes, Inf. Control, 20, 182, 10.1016/S0019-9958(72)90376-2
Chen, 2006, Generalized pairwise complementary codes with set-wise uniform interference-free windows, IEEE J. Sel. Areas Commun., 24, 65, 10.1109/JSAC.2005.858878
Feng, 2008, Generalized pairwise Z-complementary codes, IEEE Signal Process. Lett., 15, 377, 10.1109/LSP.2008.919997
Li, 2008, Inter-group complementary codes for interference-resistant CDMA wireless communications, IEEE Trans. Wirel. Commun., 7, 166, 10.1109/TWC.2008.060414
Deng, 2000, Spreading sequence sets with zero correlation zone, Electron. Lett., 36, 993, 10.1049/el:20000720
Appuswamy, 2006, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52, 3817, 10.1109/TIT.2006.878171
Tang, 2010, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56, 4038, 10.1109/TIT.2010.2050796
Hayashi, 2003, A class of ternary sequence sets with a zero-correlation zone for periodic, aperiodic, and odd correlation functions, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E, 86-A, 1850
Trinh, 2006, Multilevel Hadamard matrices and zero correlation zone sequences, Electron. Lett., 42, 748, 10.1049/el:20060475
Tang, 2000, Lower bounds on the maximum correlation of sequence set with low or zero correlation zone, Electron. Lett., 36, 551, 10.1049/el:20000462
Darnell, 1988, Synthesis of multilevel complementary sequences, Electron. Lett., 24, 1251, 10.1049/el:19880851
M. Darnell, Multi-level signals with good autocorrelation properties, in: Proceedings of International Conference Control (Control׳91), vol. 1, 1991, pp. 562–566.
García, 2010, Generation algorithm for multilevel LS codes, Electron. Lett., 46, 1465, 10.1049/el.2010.2073
Budišin, 1990, New multilevel complementary pairs of sequences, Electron. Lett., 26, 1861, 10.1049/el:19901197
Kemp, 1989, Synthesis of uncorrelated and nonsquare sets of multilevel complementary sequences, Electron. Lett., 25, 791, 10.1049/el:19890534
Dukic, 1990, A method of a spread-spectrum radar polyphase code design, IEEE J. Sel. Areas Commun., 8, 743, 10.1109/49.56381
Levanon, 2004
Frank, 1962, Phase-shift pulse codes with good periodic correlation-properties, IRE Trans. Inf. Theory, 8, 381, 10.1109/TIT.1962.1057786
Frank, 1963, Polyphase codes with good nonperiodic correlation-properties, IEEE Trans. Inf. Theory, 9, 43, 10.1109/TIT.1963.1057798
R.L. Frank, Phase coded signal receiver, U.S. patent 3906482, 1963.
R.L. Frank, Phase coded communication system, U.S. patent 3099795, 1963.
Fan, 1995, Aperiodic autocorrelation of Frank sequences, IEE Proc. Commun., 142, 210, 10.1049/ip-com:19952005
Fan, 1994, Cross-correlations of Frank sequences and Chu sequences, Electron. Lett., 30, 477, 10.1049/el:19940340
Lewis, 1981, A new class of polyphase pulse-compression codes and techniques, IEEE Trans. Aerosp. Electron. Syst., 17, 364, 10.1109/TAES.1981.309063
Lewis, 1981, Correction to, IEEE Trans. Aerosp. Electron. Syst., 17, 726
Rapajic, 1998, Merit factor based comparison of new polyphase sequences, IEEE Commun. Lett., 2, 269, 10.1109/4234.725219
S.A. Zadoff, Phase coded communication system, U.S. patent 3099796, 1963.
Chu, 1972, Polyphase codes with good periodic correlation properties, IEEE Trans. Inf. Theory, 18, 531, 10.1109/TIT.1972.1054840
Antweiler, 1990, Merit factor of Chu and Frank sequences, Electron. Lett., 26, 2068, 10.1049/el:19901334
Lewis, 1982, Linear frequency-modulation derived polyphase pulse-compression codes, IEEE Trans. Aerosp. Electron. Syst., 18, 637, 10.1109/TAES.1982.309276
Zhang, 1993, Polyphase sequence with low autocorrelations, IEEE Trans. Inf. Theory, 39, 1085, 10.1109/18.256535
Kretschmer, 1983, Doppler properties of polyphase coded pulse-compression waveforms, IEEE Trans. Aerosp. Electron. Syst., 19, 521, 10.1109/TAES.1983.309340
Schroeder, 2009
Kretschmer, 1991, Low sidelobe radar wave-forms derived from orthogonal matrices, IEEE Trans. Aerosp. Electron. Syst., 27, 92, 10.1109/7.68151
Kranakis, 1986
Green, 2003, Polyphase power-residue sequences, Proc. R. Soc. Lond. Ser. A—Math. Phys. Eng. Sci., 459, 817, 10.1098/rspa.2002.1065
Sidelnikov, 1969, Pseudo-random, sequences and nearly equidistant codes, Probl. Pereda. Inf., 5, 16
Ding, 1998, Autocorrelation values of generalized cyclotomic sequences of order two, IEEE Trans. Inf. Theory, 44, 1699, 10.1109/18.681354
Suehiro, 1988, Modulatable orthogonal sequences and their application to SSMA systems, IEEE Trans. Inf. Theory, 34, 93, 10.1109/18.2605
E.E. Kretschmer, K. Gerlach, Radar Waveforms Derived from Orthogonal Matrices, Report 9080, Naval Research Laboratory, 1980.
Popovic, 1992, Generalized chirp-like polyphase sequences with optimum correlation-properties, IEEE Trans. Inf. Theory, 38, 1406, 10.1109/18.144727
J.S. Pereira, H.J.A. da Silva, Generalized Chu polyphase sequences, in: 2009 International Conference on Telecommunications (ICT), 2009, pp. 47–52. http://dx.doi.org/10.1109/ICTEL.2009.5158617.
Sivaswamy, 1978, Multiphase complementary codes, IEEE Trans. Inf. Theory, 24, 546, 10.1109/TIT.1978.1055936
Frank, 1980, Polyphase complementary-codes, IEEE Trans. Inf. Theory, 26, 641, 10.1109/TIT.1980.1056272
Felhauer, 1992, New class of polyphase pulse-compression code with unique characteristics, Electron. Lett., 28, 769, 10.1049/el:19920486
Felhauer, 1994, Design and analysis of new P(n,k) polyphase pulse-compression codes, IEEE Trans. Aerosp. Electron. Syst., 30, 865, 10.1109/7.303755
Fowle, 1964, Design of FM pulse-compression signals, IEEE Trans. Inf. Theory, 10, 61, 10.1109/TIT.1964.1053644
Bjorck, 1995, New classes of finite unimodular sequences with unimodular Fourier-Transforms — Circulant Hadamard-Matrices with complex entries, C. R. Acad. Sci. Ser. I Math., 320, 319
Benedetto, 2009, Phase-coded waveforms and their design, IEEE Signal Process. Mag., 26, 22, 10.1109/MSP.2008.930416
Gong, 2013, Large zero autocorrelation zones of Golay sequences and their applications, IEEE Trans. Commun., 61, 3967, 10.1109/TCOMM.2013.072813.120928
Huffman, 1962, Generation of impulse-equivalent pulse trains, IRE Trans. Inf. Theory, 8, S10, 10.1109/TIT.1962.1057778
Ackroyd, 1970, The design of Huffman sequences, IEEE Trans. Aerosp. Electron. Syst., 6, 790, 10.1109/TAES.1970.310160
Ackroyd, 1971, Amplitude and phase modulated pulse trains for radar, Radio Electron. Engineer, 41, 541, 10.1049/ree.1971.0176
Ackroyd, 1972, Synthesis of efficient Huffman sequence, IEEE Trans. Aerosp. Electron. Syst., 8, 2, 10.1109/TAES.1972.309459
Ackroyd, 1977, Huffman sequences with approximately uniform envelopes or cross-correlation functions, IEEE Trans. Inf. Theory, 23, 620, 10.1109/TIT.1977.1055761
Popovic, 2010, Generalized chirp-like sequences with zero correlation zone, IEEE Trans. Inf. Theory, 56, 2957, 10.1109/TIT.2010.2046224
Li, 2013, A generic construction of Generalized Chirp-Like sequence sets with optimal zero correlation property, IEEE Commun. Lett., 17, 549, 10.1109/LCOMM.2013.012213.122806
Bomer, 1989, Polyphase Barker sequences, Electron. Lett., 25, 1577, 10.1049/el:19891059
Friese, 1994, Polyphase Barker sequences up to length 31, Electron. Lett., 30, 1930, 10.1049/el:19941306
Friese, 1996, Polyphase Barker sequences up to length 36, IEEE Trans. Inf. Theory, 42, 1248, 10.1109/18.508850
Brenner, 1998, Polyphase Barker sequences up to length 45 with small alphabets, Electron. Lett., 34, 1576, 10.1049/el:19981126
Borwein, 2005, Polyphase sequences with low autocorrelation, IEEE Trans. Inf. Theory, 51, 1564, 10.1109/TIT.2004.842778
Soltanalian, 2012, Computational design of sequences with good correlation properties, IEEE Trans. Signal Process., 60, 2180, 10.1109/TSP.2012.2186134
Aubry, 2013, Ambiguity function shaping for cognitive radar via complex quartic optimization, IEEE Trans. Signal Process., 61, 5603, 10.1109/TSP.2013.2273885
H. Dam, H. Zepernick, H. Luders, Polyphase sequence design using a genetic algorithm, in: 59th IEEE Vehicular Technology Conference, vol. 1–5, Milan, Italy, 2004, pp. 1471–1474.
J.A. Paredes, T. Aguilera, F.J. Álvarez, J.A. Fernández, J. Morera, New pseudo-orthogonal family of polyphase codes to improve Doppler resilience, in: Proceedings of 4th Indoor Positioning Indoor Navigation (IPIN 2013), 2013.
Szczegielniak, 2010, Structure optimization of phase-coded sounding signals, Acta Phys. Polonica A, 118, 164, 10.12693/APhysPolA.118.164
Gil-Lopez, 2012, A hybrid harmony search algorithm for the spread spectrum radar polyphase codes design problem, Expert Syst. Appl., 39, 11089, 10.1016/j.eswa.2012.03.063
S.P. Singh, K.S. Rao, Modified simulated annealing algorithm for poly phase code design, in: Proceedings of 2006 IEEE International Symposium on Industrial Electronics, vols. 1–7, 2006, pp. 2966–2971.
S.P. Singh, K.S. Rao, Polyphase coded signal design for netted radar systems, in: Proceedings of 2006 CIE International Conference Radar, vols. 1, 2, 2006, pp. 633–636.
S.P. Singh, K.S. Rao, Polyphase sequences design-using MSAA, in: Proceedings of ICCIMA 2007: International Conference Computational Intelligence and Multimedia Applications, vol. 4, 2007, pp. 357–362.
Singh, 2013, Polyphase radar signal design using modified simulated annealing algorithm, IETE J. Res., 53, 173, 10.1080/03772063.2007.10876133
S.P. Singh, K.S. Rao, Orthogonal twelve-phase sequence sets design, in: 2008 IEEE Region 10 Conference: TENCON 2008, vols. 1–4, 2008, pp. 13–17.
Singh, 2010, Thirty-two phase sequences design with good autocorrelation properties, Sadhana-Acad. Proc. Eng. Sci., 35, 63
D. Liu, Y. Liu, H. Cai, Orthogonal polyphase code sets design for MIMO radar using tabu search, in: 2012 IEEE International Conference Intelligent Control, Automatic Detection High-End Equipment (ICADE), 2012, pp. 123–127.
J. Stringer, G. Lamont, G. Akers, Radar phase-coded waveform design using MOEAs, in: 2012 IEEE Congress on Evolutionary Computation (CEC), 2012.
F. Gini, A.D. Maio, L. Patton, Waveform Design for Advanced Radar Systems, 22, IET Radar, Sonar and Navigation, 2012.
Perez-Bellido, 2008, A comparison of memetic algorithms for the spread spectrum radar polyphase codes design problem, Eng. Appl. Artif. Intell., 21, 1233, 10.1016/j.engappai.2008.03.011