Spray drift-based pesticide residues on untreated edible crops grown near agricultural areas

Springer Science and Business Media LLC - Tập 17 - Trang 21-31 - 2022
Hannah Bolz1,2,3, Christian Sieke1, Britta Michalski1, Ralf B. Schäfer2, Roland Kubiak3
1German Federal Institute for Risk Assessment, Berlin, Germany
2Institute for Environmental Sciences, University of Koblenz and Landau, Landau, Germany
3Institute for AgroEcology, RLP AgroScience GmbH, Neustadt/Weinstr., Germany

Tóm tắt

We aimed to quantify spray drift-based exposure of fruits and vegetables grown in gardens or allotments next to agricultural areas to plant protection products (PPP). The amount of spray drift transported into gardens during the treatment of tall growing crops or field crops was simulated. Two different test systems in an outdoor wind tunnel were used, approximating conditions for the application to both crop types. For the experiments, strawberries, tomatoes and lettuce were used representing non-target food crops in gardens. After spraying, distance-related residues of the tracer pyranine were measured on the three food crops positioned 1–15 m downwind in the non-target area. Additionally, petri dishes were placed in front of the food crops to measure the ground deposition concurrently. For both scenarios, good correlation of residues on the non-target food crops and the ground deposition was found (linear regression model, R2 = 0.88–0.97). But unlike the field crops scenario, the experimental setup of the tall growing crops shows large deviations from the field situation, not allowing the transfer of the results to the field situation. The results of the wind tunnel experiments and of field trials on ground deposition were used to estimate the amount of PPP residues on food crops cultivated near agricultural fields. For example, application of a pesticide (1.3 kg active ingredient per ha−1) to field crops was estimated to result in residue levels of 0.39 mg kg−1 on lettuce, 0.32 mg kg−1 on strawberries, and 0.06 mg kg−1 on tomatoes cultivated 5 m from the field, thus indicating an exceedance of the default maximum residue level (MRL) (0.01 mg kg−1). Therefore, further in-depth studies are required to broaden the range of non-target crops and to refine the tall growing crop scenario to allow estimations of spray drift-based residues.

Tài liệu tham khảo

Ahmed MT, Ismail SMM (1995) Residues of methomyl in strawberries, tomatoes and cucumbers. J Pestic Sci 44:197–199 Bates JAR (1990) IUPAC Reports on Pesticides - The prediction of pesticide residues in crops by the optimum use of existing data. Pure Appl Chem 62(2):337–350 Bayerische Landesanstalt für Landwirtschaft, Institut für Pflanzen-schutz (2020) Informationen zum Wirkstoff Glyphosat Bird SL, Esterly DM, Perry SG (1996) Off-target deposition of pesticides from agricultural aerial spray applications. J Environ Qual 25:1095–1104 Boutin C, Strandberg B, Carpenter D, Mathiassen SK, Thomas PJ (2014) Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications? Environ Pollut 185:295–306 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2016) Bekanntmachung über die Mindestabstände bei der Anwendung von Pflanzenschutzmitteln zum Schutz von Umstehenden und Anwohnern, die der Zulassung von Pflanzenschutzmitteln zugrunde gelegt werden (BVL 16/02/02). BAnz AT 20.05.2016 B5 Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2020) Sechste Bekanntmachung über die Abdrifteckwerte, die bei der Prüfung und Zulassung/Genehmigung von Pflanzenschutzmitteln herangezogen werden (BVL 20/02/05). BAnz AT 21.08.2020 B2 Bundesinstitut für Risikobewertung (2015) Questions and answers on residues of plant protection products in food. https://www.bfr.bund.de/cm/349/questions-and-answers-on-residues-of-plant-protection-products-in-food.pdf. Accessed 7 July 2020 Bundesministerium für Ernährung, Landwirtschaft und Verbrau-cherschutz, Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel (2008) Nationale Verzehrsstudie II Bundesverband Deutscher Gartenfreunde e.V. (2008) Artenvielfalt: Biodiversität der Kulturpflanzen in Kleingärten Byass JB, Lake JR (1977) Spray drift from a tractor-powered field sprayer. J Pestic Sci 8:117–126 Carlsen SCK, Spliid NH, Svensmark B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64(5):778–786 Dabrowski JM, Schulz R (2003) Predicted and measured levels of Azinphosmethyl in the Lourens River, South Africa: comparison of runoff and spray drift. Environ Toxicol Chem 22(3):494–500 Davis BNK, Brown MJ, Aj F, Yates TJ, Plant RA (1994) The effects of hedges on spray deposition and on the biological impact of pesticide spray drift. Ecotoxicol Environ Safe 27:281–293 De Schampheleire M, Nuyttens D, Baetens K, Cornelis W, Gabriels D, Spanoghe P (2009) Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precis Agric 10:409–420 European Commission, Directorate-General for Health and Food Safety (2017) Overview report—pesticide residue control in organic production European Crop Protection (2014) Pesticide use and food safety European Food Safety Authority (EFSA) (2021) The 2019 European Union report on pesticide residues in food. EFSA J 19(4):e06491 European Food Safety Authority (2018) Monitoring data on pesticide residues in food: results on organic versus conventionally produced food. EFSA Supporting Publication 2018:EN-1397. https://doi.org/10.2903/sp.efsa.2018.EN-1397 Food and Agriculture Organization of the United Nations, World Health Organization (2008) Principles and methods for the risk assessment of chemicals in food. World Health Organization, 2009 Ganzelmeier H, Rautmann D, Spangenberg R, Streloke M, Herrmann M, Wenzelburger H-J, Walter H-F (1995) Studies on the spray drift of plant protection products: Results of a test program carried out throughout the Federal Republic of Germany. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 305 Gooijer YM, Hoftijser GQ, Lageschaar LCC, Oerlemans A, Scheepers PTJ, Kivits CM, Duyzer J, Gerritsen-Ebben MG, Figueiredo DM, Huss A, Krop EJM, Vermeulen RCG, Berg F van den, Holterman HJ, Jacobs CJM, Kruijne R, Mol JGJ, Wenneker M, Zande JC van de, Sauer PJJ (2019) Research on exposure of residents to pesticides in the Netherlands: OBO flower bulbs. Utrecht University Goossens D, Offer Z, London G (2000) Wind tunnel and field calibration of five aeolian sand traps. Geomorphology 35:233–252 Grella M, Gallart M, Marucco P, Balsari P, Gil E (2017) Ground deposition and airborne spray drift assessment in vineyard and orchard: the influence of environmental variables and sprayer settings. Sustainability 9(728):1–26 Grisso R, Askew SD, McCall (2019) Nozzles: selection and sizing. Virginia Cooperative Extension, Virginia Tech 442-032 Herbst A, Wygoda H-J (2006) Pyranin—ein fluoreszierender Farb-stoff für applikationstechnische Versuche. Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes 58(3):79–85 Hofman V (2018) Spray equipment and calibration. Agricultural and Biosystems Engineering Løfstrøm P, Bruus M, Andersen HV, Kjær C, Nuyttens D, Astrup P (2013) The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers. J Pestic Sci 38(3):129–138 Maclachlan DJ, Hamilton D (2010) A new tool for the evaluation of crop residue trial data (day-zero-plus decline). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(3):347–364. https://doi.org/10.1080/19440040903403024 Marrs RH, Frost A (1997) A microcosm approach to the detection of the effects of herbicide spray drift in plant Communities. J Environ Manag 50:369–388 Marrs RH, Aj F, Plant RA (1991) effects of herbicide spray drift on selected species of nature conservation interest: the effects of plant age and surrounding vegetation structure. Environ Pollut 69:223–235 Nairn JJ, Forster WA (2015) Photostability of pyranine and suitability as a spray drift tracer. N Z Plant Prot 68:32–37 Nordby A, Skuterud R (1975) The effects of boom height, working pressure and wind speed on spray drift. Weed Res 14:385–395 Nuyttens D, de Schampheleire M, Baetens K, Sonck B (2007) The influence of operator-controlled variables on spray drift from field crop sprayers. Trans ASABE 50(4):1129–1140 Olszyk D, Pfleeger T, Shiroyama T, Blakeley-Smith M, Lee EH, Plocher M (2017) Plant reproduction is altered by simulated herbicide drift to constructed plant communities. Environ Toxicol Chem 36(10):2799–2813 Phillips JC, Miller PCH (1999) Field and wind tunnel measurements of the airborne spray volume downwind of single flat-fan nozzles. J Agric Eng Res 72:161–170 Rautmann D, Streloke M, Winkler R (2001) New basic drift values in the authorization procedure for plant protection products. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft. In: Workshop on risk assessment and risk mitigation measures in the context of the authorization of plant protection products, pp 133–141 Regulation (EC) No 396/2005: of the European Parliament and of the Council on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC (2005) Safi JM, Abou-Foul NS, El-Nahhal YZ, El-Sebae AH (2002) Monitoring of pesticide residues on cucumber, tomatoes and strawberries in Gaza Governorates. Palestine Nahrung 46(1):34–39 Schweizer S, Kauf P, Höhn H, Naef A (2013) Abdrift—reduzierende Maßnahmen im Praxisversuch. Agrarforschung Schweiz 4:484–491 Seiler K, Erzinger F, Wyss GS (2007) Pestizidrückstände auf Bio-Produkten: Beurteilung der Kontaminationswege am Beispiel Bio-Wein Stadler R, Regenauer W (2005) Drift studies - comparison of field and wind tunnel experiments. Commun Agric Appl Biol Sci 70(4):971–973 Strandberg B, Sørensen PB, Bruus M, Bossi R, Dupont YL, Link M, Damgaard CF (2021) Effects of glyphosate spray-drift on plant flowering. Environ Pollut 280:116953 Umweltbundesamt (2018) Umwelt und Landwirtschaft 2018 van de Zande JC, Butler Ellis MC, Wenneker M, Walklate PJ, Kennedy MC (2014a) Spray drift and bystander risk from fruit crop spraying. Asp Appl Biol 122:177–186 van de Zande JC, Michielsen JMGP, Stallinga H, van Velde P (2014b) Spray drift of drift reducing nozzle types spraying a bare soil surface with a boom sprayer. Asp Appl Biol 122:245–253 Verordnung (EG) Nr. 1107/2009 des Europäischen Parlaments und des Rates vom 21. Oktober 2009 über das Inverkehrbringen von Pflanzenschutzmitteln und zur Aufhebung der Richtlinien 79/117/EWG und 91/414/EWG des Rates