Spontaneous superlattice formation and thermoelectric properties of A-site excess (La, Sr)CoO3 thin films prepared using dynamic aurora pulsed laser deposition

M. Arockia Jenisha1,2,3, Shota Koda2, K. Gunasekaran2,3, Takahiko Kawaguchi2, Naonori Sakamoto2,4,5, S. Harish3, M. Navaneethan1,3, Naoki Wakiya5,2
1Nanotechnology Research Centre, SRM Institute of Science and Technology, Kattankulathur, India
2Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
3Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, India
4Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
5Graduate School of Integrated Science and Technology, Department of Engineering, Shizuoka University, Hamamatsu, Japan

Tóm tắt

Periodic nanomaterials like superlattices find extensive use in diverse applications. Epitaxial growth has been extensively recorded in semiconductors, leading to the spontaneous formation of layer structures. However, this phenomenon is almost not observed in ceramics. In this study, we aimed to form the spontaneous superlattice of (La, Sr)CoO3 thin films having an A-site excess by dynamic aurora PLD method with the presence of magnetic field. The spontaneous superlattice was formed by varying several parameters (magnetic field, annealing oxygen pressure, and A/B ratio) in pulsed laser deposition (PLD), and its thermoelectric properties were studied. The (La, Sr)CoO3 spontaneous superlattice was successfully formed by depositing the thin film under an applied magnetic field ranging from 100 to 200 mT. Moreover, thin film A-site excess composition was optimized around A/B = 1.2 to 1.4 in atomic ratio and the in-plane lattice parameter of the thin film coincided with the substrate. The presence of a satellite peak of (La1-xSrx)CoO3 was observed by the XRD analysis, providing confirmation of the formation of a superlattice, and its superlattice period was calculated. The thermoelectric measurement was performed for (La, Sr)CoO3 thin films with a superlattice period of 12 nm and exhibited the maximum Seebeck coefficient was about 28.4 μVK−1 at 880 K. The electrical conductivity was obtained as 50 Scm−1 at 850 K due to the higher density of states in the valence band near EF. Moreover, the decreasing trend of the Seebeck coefficient was observed with an increasing superlattice period due to the presence of oxygen vacancy that occurred by the PLD deposition under the low annealing oxygen pressure. The power factor was calculated as 2.3 μWm−1K−2 at 783 K. This measurement demonstrates the thin film’s adequate capacity to conduct electric current.

Từ khóa


Tài liệu tham khảo

G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mat Rev. 48, 45–66 (2003) G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv. Mater. 32, 2001537 (2020) Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong, S. Chai, D. Li, J. Zhang, G. Tang, Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scr. Mater. 147, 74–78 (2018) A.J. Ahmed, S.M.K. Nazrul Islam, R. Hossain, J. Kim, M. Kim, M. Billah, M.S.A. Hossain, Y. Yamauchi, X. Wang, Enhancement of thermoelectric properties of La-doped SrTiO3 bulk by introducing nanoscale porosity. Royal Soc. Open Sci. 6, 190870 (2019) K.C. Kim, S.S. Lim, S.H. Lee, J. Hong, D.Y. Cho, A.Y. Mohamed, C.M. Koo, S.H. Baek, J.S. Kim, S.K. Kim, Precision interface engineering of an atomic layer in bulk Bi2Te3 alloys for high thermoelectric performance. ACS Nano. 13, 7146–7154 (2019) F. Guo, J. Zhu, B. Cui, Y. Sun, X. Zhang, Cai W and Sui, Compromise of thermoelectric and mechanical properties in LiSbTe2 and LiBiTe2 alloyed SnTe. Act Mat. 231, 117922 (2022) Z. Zhang, K. Zhao, H. Chen, Q. Ren, Z. Yue, T.R. Wei, P. Qiu, L. Chen, and Shi X, Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex. Act Mat. 224, 117512 (2022) I. Pallecchi, N. Manca, B. Patil, L. Pellegrino, D. Marré, Review on thermoelectric properties of transition metal dichalcogenides. Nano Future. 4, 032008 (2020) M.A. Jenisha, S. Kavirajan, S. Harish, J. Archana, K. Kamalabharathi, E.S. Kumar, M. Navaneethan, Interfacial engineering effect and bipolar conduction of Ni-doped MoS2 nanostructures for thermoelectric application. J. Alloy. Compd. 895, 162493 (2022) H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-x. Adv. Mater. 25, 6607–6612 (2013) V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Modern Phy. 71, 1125 (1999) J.J. Zhang, G. Katsaros, F. Montalenti, D. Scopece, R.O. Rezaev, C. Mickel, B. Rellinghaus, L. Miglio, S. De Franceschi, A. Rastelli, O.G. Schmidt, Monolithic growth of ultrathin Ge nanowires on Si (001). Phys. Rev. 109, 085502 (2012) K. Pakuła, J. Borysiuk, R. Bożek, J.M. Baranowski, Long-range order spontaneous superlattice in AlGaN epilayers. J. crys growth. 296, 191–196 (2006) H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater. 6, 129–134 (2007) J. Liu, X. Wu, W.N. Lennard, D. Landheer, Surface-directed spinodal decomposition in hafnium silicate thin films. Phys. Rev. B 80, 041403 (2009) H. Yang, H. Wang, B. Maiorov, J. Lee, D. Talbayev, M.J. Hinton, D.M. Feldmann, J.L. MacManus-Driscoll, A.J. Taylor, L. Civale, T.R. Lemberger, Self-assembled multilayers and enhanced superconductivity in (YBa2Cu3O7-x)0.5:(BaZrO3)0.5 nanocomposite films. J. Appl. Phys. 106, 093914 (2009) R. Takahashi, K. Valset, E. Folven, E. Eberg, J.K. Grepstad, T. Tybell, Long-range spontaneous structural ordering in barium stannate thin films. Appl. Phys. Lett. 97, 081906 (2010) N. Wakiya, N. Sakamoto, S. Koda, W. Kumasaka, N. Debnath, T. Kawaguchi, T. Kiguchi, K. Shinozaki, H. Suzuki, Magnetic-field-induced spontaneous superlattice formation via spinodal decomposition in epitaxial strontium titanate thin films. NPG Asia Mat. 8, 279–279 (2016) N. Wakiya, T. Kawaguchi, N. Sakamoto, H. Das, K. Shinozaki, H. Suzuki, Spontaneous superlattice formation and electrical properties of Sr-excess SrTiO3 thin film deposited on SrTiO3(101) by dynamic aurora pulsed laser deposition. J. Ceram. Soc. Jpn. 125, 856–865 (2017) K. Zhang, J. Dai, X. Zhu, X. Zhu, X. Zuo, P. Zhang, L. Hu, W. Lu, W. Song, Z. Sheng, W. Wu, Vertical La0.7Ca0.3MnO3 nanorods tailored by high magnetic field assisted pulsed laser deposition. Sci Rep. 6, 19483 (2016) C.Q. Chen, Y.T. Pei, K.P. Shaha, J.T.M. De Hosson, Tunable self-organization of nanocomposite multilayers. Appl. Phys. Lett. 96, 073103 (2010) K. Iwasaki, I. Tsuyoshi, N. Takanori, A. Yuji, Y. Masahito, M. Tsuneo, Thermoelectric properties of polycrystalline La1-xSrxCoO3. J. Solid State Chem. 181, 3145–3150 (2008) S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54–55 (1958) T. Suzuki, Y. Nishi, M. Fujimoto, Defect structure in homoepitaxial non-stoichiometric strontium titanate thin films. Philos. Mag. A 80, 621–637 (2000) J. Androulakis, P. Migiakis, J. Giapintzakis, A La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099–1101 (2004) M.A. Jenisha, S. Kavirajan, S. Harish, S. Kamalakannan, J. Archana, E.S. Kumar, N. Wakiya, M. Navaneethan, Multiple approaches of band engineering and mass fluctuation of solution-processed n-type Re-doped MoS2 nanosheets for enhanced thermoelectric power factor. J. Colloid Interface Sci. 895, 162493 (2022) K. Morito, T. Suzuki, M. Fujimoto, Microstructure and electrical properties of nonstoichiometric strontium titanate thin films grown on platinum electrodes. Jpn. J. Appl. Phys. 40, 13101314 (2001) G.J. Snyder, Pereyra A and Gurunathan R, Effective mass from Seebeck coefficient. Adv. Funct. Mater. 32, 2112772 (2022) M. He, F. Qiu, Z. Lin, Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6, 1352–1361 (2013) V. Schmidt, P.F. Mensch, S.F. Karg, B. Gotsmann, P. Das Kanungo, H. Schmid, H. Riel, Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires. Appl. Phys. Lett. 104, 012113 (2014) M.A. Jenisha, S. Kavirajan, S. Harish, C. Kanagaraj, E. Senthil Kumar, J. Archana, N. Wakiya, M. Navaneethan, Coupling of band shift and phase transition for enhanced electrical conductivity in p-type metallic CuS towards mid-temperature thermoelectric application. Emergent Mater. 7, 597 (2023) H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10, 44–49 (2007) Z. Viskadourakis, M. Pervolaraki, G.I. Athanasopoulos, J. Giapintzakis, Thermoelectric properties of strained, lightly-doped La1–xSrxCoO3 thin films. J. Appl. Phys. 125, 055102 (2019) Li. Zhang, Ping Li, Kai Huang, Zhen Tang, Guohong Liu, Yibao Li, Simple chemical solution deposition and thermoelectric properties of epitaxial La0.95Sr0.05CoO3 thin films. Mater Lett. 65, 1696–1698 (2011) Hemanshu D. Bhatt, Ramakrishna Vedula, Seshu B. Desu, Gustave C. Fralick, La(1−x)SrxCoO3 for thin film thermocouple applications. Thin Solid Films. 350, 249–257 (1999)