Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhận diện đối tượng tự phát ở khỉ Capuchin: đánh giá ảnh hưởng của giới tính, giai đoạn làm quen và khoảng thời gian giữ lại
Tóm tắt
Nhiệm vụ nhận diện đối tượng tự phát (SOR) là một bài kiểm tra trí nhớ đa năng và được sử dụng rộng rãi, chỉ mới được thiết lập gần đây ở các loài linh trưởng không phải người (khỉ Marmoset). Ở đây, chúng tôi đã mở rộng những phát hiện ban đầu này bằng cách đánh giá hiệu suất của khỉ Capuchin trưởng thành trên nhiệm vụ SOR và ba tham số tác động có thể can thiệp - giai đoạn làm quen với đối tượng, khoảng thời gian giữ lại và giới tính. Trong Thí nghiệm 1, sau một khoảng thời gian làm quen ban đầu 10 phút với hai đối tượng giống hệt nhau và một khoảng thời gian giữ lại đã được thiết lập trước (0,5, 6 hoặc 24 giờ), khỉ Capuchin đã ưu tiên khám phá một đối tượng mới thay vì đối tượng quen thuộc trong một phiên thử nghiệm 10 phút, bất kể độ dài khoảng thời gian giữ lại. Trong Thí nghiệm 2, khỉ Capuchin lại được tiếp xúc với hai đối tượng giống hệt nhau (nhưng bây giờ là 10 hoặc 20 phút), sau đó là một khoảng thời gian giữ lại 30 phút và một phiên thử nghiệm 10 phút. Sự ưa thích khám phá đối tượng mới hơn là đối tượng quen thuộc không bị ảnh hưởng bởi độ dài của khoảng thời gian làm quen, có thể là do việc khám phá tổng thể vẫn không thay đổi. Tuy nhiên, mức độ khám phá đối tượng ban đầu không liên quan đến hiệu suất nhiệm vụ, và cả khỉ đực và cái đều thể hiện hiệu suất tương tự trong nhiệm vụ SOR với giai đoạn làm quen 10 phút, độ trễ 30 phút và phiên thử nghiệm 10 phút. Do đó, khỉ Capuchin đực và cái đều nhận diện đối tượng trong nhiệm vụ SOR sau cả khoảng thời gian ngắn và dài, trong khi việc tăng gấp đôi ở giai đoạn làm quen không ảnh hưởng đến hiệu suất của nhiệm vụ. Các kết quả cũng cung cấp thêm hỗ trợ cho việc sử dụng các mô hình học tập tình cờ để đánh giá trí nhớ nhận diện ở các loài linh trưởng không phải người.
Từ khóa
#khỉ Capuchin #nhận diện đối tượng #trí nhớ nhận diện #giai đoạn làm quen #khoảng thời gian giữ lại #giới tínhTài liệu tham khảo
Ainge JA, Heron-Maxwell C, Theofilas P, Wright P, Hoz L, Wood ER (2006) The role of the hippocampus in object recognition in rats: examination of the influence of task parameters and lesion size. Behav Brain Res 167:183–195. https://doi.org/10.1016/j.bbr.2005.09.005
Akkerman S, Blokland A, Reneerkensa O, van Goethema NP, Bollena E, Gijselaersa HJM, Liebena CKJ, Steinbuscha HWM, Prickaerts J (2012) Object recognition testing: methodological considerations on exploration and discrimination measures. Behav Brain Res 232:335–347. https://doi.org/10.1016/j.bbr.2012.03.022
Albasser MM, Davies M, Futter JE, Aggleton JP (2009) Magnitude of the object recognition deficit associated with perirhinal cortex damage in rats: effects of varying the lesion extent and the duration of the sample period. Behav Neurosci 123:115–124. https://doi.org/10.1037/a0013829
Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z
Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11. https://doi.org/10.1101/lm.1650110
Chan M, Eacott MJ, Sanderson DJ, Wang J, Sun M, Easton A (2018) Continual trials spontaneous recognition tasks in mice: reducing animal numbers and improving our understanding of the mechanisms underlying memory. Front Behav Neurosci 12:214. https://doi.org/10.3389/fnbeh.2018.00214
Chevalier-Skolnikoff S (1989) Spontaneous tool use and sensorimotor intelligence in Cebus compared with other monkeys and apes. Behav Brain Sci 12:561–588. https://doi.org/10.1017/S0140525X00057678
Clark RE, Martin SJ (2005) Interrogating rodents regarding their object and spatial memory. Curr Opin Neurobiol 15:593–598. https://doi.org/10.1016/j.conb.2005.08.014
Costa CS, Oliveira AWC, Easton A, Barros M (2022) A single brief stressful event time-dependently affects object recognition memory and promotes familiarity preference in marmoset monkeys. Behav Processes 199:104645. https://doi.org/10.1016/j.beproc.2022.104645
Cruz-Rizzolo RJ, Lima MAX, Ervolino E, Oliveira JA, Casatti CA (2011) Cyto, myelo and chemoarchitecture of the prefrontal cortex of the Cebus monkey. BMC Neurosci 12:6. https://doi.org/10.1186/1471-2202-12-6
Cyrenne DM, Brown GR (2011) Ontogeny of sex differences in response to novel objects from adolescence to adulthood in lister-hooded rats. Dev Psychiobiol 53:670–676. https://doi.org/10.1002/dev.20542
de Castro V, Girard P (2021) Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 11:9138. https://doi.org/10.1038/s41598-021-88357-7
Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254. https://doi.org/10.1016/j.bbr.2009.12.036
Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59. https://doi.org/10.1016/0166-4328(88)90157-x
Ennaceur A, Michalikova S, Bradford A, Ahmed S (2005) Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav Brain Res 159:247–266. https://doi.org/10.1016/j.bbr.2004.11.006
Fagan JF (1974) Infant recognition memory: the effects of length of familiarization and type of discrimination task. Child Dev 45:351–356. https://doi.org/10.1111/j.1467-8624.1974.tb00603.x
Fragaszy LM, Visalberghi D, Fedigan E (2004) The complete capuchin: the biology of the genus Cebus. Cambridge University Press, Cambridge
Frick KM, Gresack JE (2003) Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice. Behav Neurosci 117:1283–1291. https://doi.org/10.1037/0735-7044.117.6.1283
Gaskin S, Tardif M, Cole E, Piterkin P, Kayello L, Mumby DG (2010) Object familiarization and novel-object preference in rats. Behav Processes 83:61–71. https://doi.org/10.1016/j.beproc.2009.10.003
Ghi P, Orsetti M, Gamalero SR, Ferretti C (1999) Sex differences in memory performance in the object recognition test: possible role of histamine receptors. Pharmacol Biochem Behav 64:761–766. https://doi.org/10.1016/s0091-3057(99)00143-4
Gower EC (1990) The long-term retention of events in monkey memory. Behav Brain Res 38:191–198. https://doi.org/10.1016/0166-4328(90)90174-d
Gulinello M, Mitchell HA, Chang Q, O’Brien WT, Zhaolan Z, Abel T, Want L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NK, Fagiolini M, Cole TB, Burbacher TM, Crawley J (2019) Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 165:106780. https://doi.org/10.1016/j.nlm.2018.01.001
Gunderson VM, Swartz KB (1986) Effects of familiarization time on visual recognition memory in infant pigtailed macaques (Macaca nemestrina). Dev Psychol 22:477–480. https://doi.org/10.1037/0012-1649.22.4.477
Hamson DK, Roes MM, Galea LAM (2016) Sex hormones and cognition: neuroendocrine influences on memory and learning. Compr Physiol 6:1295–1337. https://doi.org/10.1002/cphy.c150031
Hegab IM, Tan Y, Wang C, Yao B, Wang H, Ji W, Su J (2018) Examining object recognition and object-in-place memory in plateau zokors, Eospalax baileyi. Behav Processes 146:34–41. https://doi.org/10.1016/j.beproc.2017.11.007
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP (2021a) Neutral sphingomyelinase is an affective valence-dependent regulator of learning and memory. Cereb Cortex 31:1316–1333. https://doi.org/10.1093/cercor/bhaa298
Kalinichenko LS, Wang AL, Mühle C, Abdel-Hafiz L, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP (2021b) Neutral ceramidase is a marker for cognitive performance in rats and monkeys. Pharmacol Rep 73:73–84. https://doi.org/10.1007/s43440-020-00159-2
Kinnavane L, Albasser MM, Aggleton JP (2015) Advances in the behavioural testing and network imaging of rodent recognition memory. Behav Brain Res 285:67–78. https://doi.org/10.1016/j.bbr.2014.07.049
Kosten TA, Lee HJ, Kim JJ (2007) Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain Res 1154:144–153. https://doi.org/10.1016/j.brainres.2007.03.081
Levy LJ, Astur RS, Frick KM (2005) Men and women differ in object memory but not performance of a virtual radial maze. Behav Neurosci 119:853–862. https://doi.org/10.1037/0735-7044.119.4.853
Luine V (2015) Recognition memory tasks in neuroendocrine research. Behav Brain Res 285:158–164. https://doi.org/10.1016/j.bbr.2014.04.032
McKee RD, Squire LR (1993) On the development of declarative memory. J Exp Psychol Learn Mem Cogn 19:397–404. https://doi.org/10.1037//0278-7393.19.2.397
Melamed JL, Jesus FM, Maior RS, Barros M (2017) Scopolamine induces deficits in spontaneous object-location recognition and fear-learning in marmoset monkeys. Front Pharmacol 8:395. https://doi.org/10.3389/fphar.2017.00395
Murai C, Tanaka M, Tomonaga M, Sakagami M (2011) Long-term visual recognition of familiar persons, peers, and places by young monkeys (Macaca fuscata). Dev Psychobiol 53:732–737. https://doi.org/10.1002/dev.20548
Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432. https://doi.org/10.1016/j.pharmthera.2010.07.004
Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24:2013–2026. https://doi.org/10.1523/JNEUROSCI.3763-03.2004
Oliveira AWC, Pacheco JVN, Costa CS, Aquino J, Maior RS, Barros M (2021) Scopolamine and MK-801 impair recognition memory in a new spontaneous object exploration task in monkeys. Pharmacol Biochem Behav 211:173300. https://doi.org/10.1016/j.pbb.2021.173300
Ottoni EB, Izar P (2008) Capuchin monkey tool use: overview and implications. Evol Anthropol 17:171–178. https://doi.org/10.1002/evan.20185
Ozawa T, Yamada K, Ichitani Y (2011) Long-term object location memory in rats: effects of sample phase and delay length in spontaneous place recognition test. Neurosci Lett 497:37–41. https://doi.org/10.1016/j.neulet.2011.04.022
Pascalis O, Hunkin NM, Holdstock JS, Isaac CL, Mayes AR (2004) Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item cognition. Neuropsychologia 42:1293–1300. https://doi.org/10.1016/j.neuropsychologia.2004.03.005
Perry S (2011) Social traditions and social learning in capuchin monkeys (Cebus). Philos Trans R Soc London B Biol Sci 366:988–996. https://doi.org/10.1098/rstb.2010.0317
Phillips KA, Sherwood CC (2008) Cortical development in brown capuchin monkeys: a structural MRI study. Neuroimage 43:657–664. https://doi.org/10.1016/j.neuroimage.2008.08.031
Purdy KS, McMullen PA, Freedman M (2002) Changes to the object recognition system in patients with dementia of the Alzheimer’s type. Brain Cogn 49:213–216. https://doi.org/10.1006/brcg.2001.1469
Ricceri L, Colozza C, Calamandrei G (2000) Ontogeny of spatial discrimination in mice: a longitudinal analysis in the modified open-field with pbjects. Dev Psychobiol 37:109–118. https://doi.org/10.1002/1098-2302(200009)37:2%3c109::aid-dev6%3e3.0.co;2-d
Richmond J, Sowerby P, Colombo M, Hayne H (2004) The effect of familiarization time, retention interval, and context change on adults’ performance in the visual paired-comparison task. Dev Psychobiol 44:146–155. https://doi.org/10.1002/dev.10161
Rilling JK, Insel TR (1999) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37:191–223. https://doi.org/10.1006/jhev.1999.0313
Rose SA, Gottfried AW, Melloy-Carminar P, Bridger WH (1982) Familiarity and novelty preferences in infant recognition memory: implications for information processing. Dev Psychol 18:704–713. https://doi.org/10.1037/0012-1649.18.5.704
Shimoda S, Ozawa T, Ichitani Y, Yamada K (2021) Long-term associative memory in rats: effects of familiarization period in object-place-context recognition test. PLoS ONE 16:0254570. https://doi.org/10.1371/journal.pone.0254570
Sik A, van Nieuwehuyzen P, Prickaerts J, Blokland A (2003) Performance of different mouse strains in an object recognition task. Behav Brain Res 147:49–54. https://doi.org/10.1016/s0166-4328(03)00117-7
Sutcliffe JS, Marshall KM, Neill JC (2007) Influence of gender on working and spatial memory in the novel object recognition task in the rat. Behav Brain Res 177:117–125. https://doi.org/10.1016/j.bbr.2006.10.029
Vannuchi CRS, Costa CS, Jesus FM, Maior RS, Barros M (2020) Sex, diurnal variation and retention interval differently affect performance of marmoset monkeys in a recognition memory task for object location. Behav Brain Res 379:112334. https://doi.org/10.1016/j.bbr.2019.112334
Voyer D, Postma A, Brake B, Imperato-McGinley J (2007) Gender differences in object location memory: a meta-analysis. Psychon Bull Rev 14:23–38. https://doi.org/10.3758/bf03194024
Walf AA, Rhodes ME, Frye CA (2006) Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone primed rats. Neurobiol Learn Mem 86:35–46. https://doi.org/10.1016/j.nlm.2006.01.004
Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32:1055–1070. https://doi.org/10.1016/j.neubiorev.2008.04.004
Zeamer AE, Heuer E, Bachevalier J (2010) Developmental trajectory of object recognition memory in infant rhesus monkeys with and without neonatal hippocampal lesions. J Neurosci 30:9157–9165. https://doi.org/10.1523/JNEUROSCI.0022-10.2010
Zola SM, Squire LR, Teng E, Stefanacci L, Buffalo EA, Clark RE (2000) Impaired recognition memory in monkeys after damage limited to the hippocampal region. J Neurosci 20:451–463. https://doi.org/10.1523/JNEUROSCI.20-01-00451.2000