Splines on Triangulations with Hanging Vertices
Tóm tắt
Polynomial spline spaces defined on triangulations with hanging vertices are studied. In addition to dimension formulae, explicit basis functions are constructed, and their supports and stability are discussed. The approximation power of the spaces is also treated.
Tài liệu tham khảo
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
Brix, K., Pinto, M.C., Dahmen, W.: A multilevel preconditioner for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 46, 2742–2768 (2008)
Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)
Schumaker, L.L.: On the dimension of spaces of piecewise polynomials in two variables. In: Schempp, W., Zeller, K. (eds.) Multivariate Approximation Theory, pp. 396–412. Birkhäuser, Basel (1979)
Schumaker, L.L.: Dual bases for spline spaces on cells. Comput. Aided Geom. Des. 5, 277–284 (1988)
Schumaker, L.L.: Computing bivariate splines in scattered data fitting and the finite element method. Numer. Algorithms 48, 237–260 (2008)
Schumaker, L.L., Wang, L.: Spline spaces on TR-meshes with hanging vertices. Numer. Math. 118, 531–548 (2011)
Šolın, P., Červený, J., Doležel, I.: Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simul. 77, 117–132 (2008)