Splicing factor 3b subunit 1 (Sf3b1) haploinsufficient mice display features of low risk Myelodysplastic syndromes with ring sideroblasts
Tóm tắt
The presence of somatic mutations in splicing factor 3b subunit 1 (SF3B1) in patients with Myelodysplastic syndromes with ring sideroblasts (MDS-RS) highlights the importance of the RNA-splicing machinery in MDS. We previously reported the presence of bone marrow (BM) RS in Sf3b1 heterozygous (Sf3b1+/−) mice which are rarely found in mouse models of MDS. Sf3b1+/− mice were originally engineered to study the interaction between polycomb genes and other proteins. We used routine blood tests and histopathologic analysis of BM, spleen, and liver to evaluate the hematologic and morphologic characteristics of Sf3b1+/− mice in the context of MDS by comparing the long term follow-up (15 months) of Sf3b1+/− and Sf3b1+/+ mice. We then performed a comprehensive RNA-sequencing analysis to evaluate the transcriptome of BM cells from Sf3b1+/− and Sf3b1+/+ mice. Sf3b1+/− exhibited macrocytic anemia (MCV: 49.5 ± 1.6 vs 47.2 ± 1.4; Hgb: 5.5 ± 1.7 vs 7.2 ± 1.0) and thrombocytosis (PLTs: 911.4 ± 212.1 vs 878.4 ± 240.9) compared to Sf3b1+/+ mice. BM analysis showed dyserythropoiesis and occasional RS in Sf3b1+/− mice. The splenic architecture showed increased megakaryocytes with hyperchromatic nuclei, and evidence of extramedullary hematopoiesis. RNA-sequencing showed higher expression of a gene set containing Jak2 in Sf3b1+/− compared to Sf3b1+/+. Our study indicates that Sf3b1+/− mice manifest features of low risk MDS-RS and may be relevant for preclinical therapeutic studies.
Tài liệu tham khảo
Swerdlow SH, Campo E, Harris NE, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW: WHO classification of tumours of haematopoietic and lymphoid tissues. Refractory Anaemia with Ring Sideroblasts. Edited by: Hasserjian RP, Gattermann N, Bennett JM, Brunning RD, Thiele J. 2008, IARC, Lyon, 96-97. 4
Szpurka H, Tiu R, Murugesan G, Aboudola S, Hsi ED, Theil KS, Sekeres MA, Maciejewski JP: Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. Blood. 2006, 108: 2173-2181. 10.1182/blood-2006-02-005751.
Ceesay MM, Lea NC, Ingram W, Westwood NB, Gaken J, Mohamedali A, Cervera J, Germing U, Gattermann N, Giagounidis A, Garcia-Casado Z, Sanz G, Mufti GJ: The JAK2 V617F mutation is rare in RARS but common in RARS-T. Leukemia. 2006, 20: 2060-2061. 10.1038/sj.leu.2404373.
Flach J, Dicker F, Schnittger S, Kohlmann A, Haferlach T, Haferlach C: Mutations of JAK2 and TET2, but not CBL are detectable in a high portion of patients with refractory anemia with ring sideroblasts and thrombocytosis. Haematologica. 2010, 95: 518-519. 10.3324/haematol.2009.013631.
Hellstrom-Lindberg E, Cazzola M: The role of JAK2 mutations in RARS and other MDS. Hematol Am Soc Hematol Educ Program. 2008, 2008: 52-59. 10.1182/asheducation-2008.1.52. doi:10.1182/asheducation-2008.1.52ASH Education Book
Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H, Littlewood TJ, Malcovati L, Della Porta MG, Jädersten M, Killick S, Giagounidis A, Bowen D, Hellström-Lindberg E, Cazzola M, Wainscoat JS: The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One. 2008, 3: e1970-10.1371/journal.pone.0001970.
Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S, Campbell LJ, Wang L, Langford CF, Fidler C, Oscier D, Aul C, Wainscoat JS, Boultwood J: Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood. 2006, 108: 337-345. 10.1182/blood-2005-12-4769.
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011, 478: 64-69. 10.1038/nature10496.
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, Godfrey AL, Rapado I, Cvejic A, Rance R, McGee C, Ellis P, Mudie LJ, Stephens PJ, McLaren S, Massie CE, Tarpey PS, Varela I, Nik-Zainal S, Davies HR, Shlien A, Jones D, Raine K, Hinton J, Butler AP, Teague JW: Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011, 365: 1384-1395. 10.1056/NEJMoa1103283.
Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A, O'Keefe C, Rogers HJ, Sekeres MA, Maciejewski JP, Tiu RV: SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia. 2012, 26: 542-545. 10.1038/leu.2011.232.
Visconte V, Tabarroki A, Rogers HJ, Hasrouni E, Traina F, Makishima H, Hamilton BK, Liu Y, O'Keefe C, Lichtin A, Horwitz L, Sekeres MA, Hsieh FH, Tiu RV: SF3B1 mutations are infrequently found in non-myelodysplastic bone marrow failure syndromes and mast cell diseases but, if present, are associated with the ring sideroblast phenotype. Haematologica. 2013, 98: e105-107. 10.3324/haematol.2013.090506.
Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A, Przychodzen B, Bupathi M, Guinta K, Afable MG, Sekeres MA, Padgett RA, Tiu RV, Maciejewski JP: Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012, 119: 3203-3210. 10.1182/blood-2011-12-399774.
Maciejewski JP, Padgett RA: Defects in spliceosomal machinery: a new pathway of leukaemogenesis. Br J Haematol. 2012, 158: 165-173. 10.1111/j.1365-2141.2012.09158.x.
Visconte V, Makishima H, Maciejewski JP, Tiu RV: Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 2012, 26: 2447-54. 10.1038/leu.2012.130.
Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, McMahon J, Makishima H, Szpurka H, Jankowska A, Jerez A, Sekeres MA, Saunthararajah Y, Advani AS, Copelan E, Koseki H, Isono K, Padgett RA, Osman S, Koide K, O'Keefe C, Maciejewski JP, Tiu RV: SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012, 120: 3173-3186. 10.1182/blood-2012-05-430876.
Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H: Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 2005, 19: 536-541. 10.1101/gad.1284605.
Beachy SH, Aplan PD: Mouse models of myelodysplastic syndromes. Hematol Oncol Clin North Am. 2010, 24: 361-375. 10.1016/j.hoc.2010.02.002.
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ: SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011, 365: 2497-2506. 10.1056/NEJMoa1109016.
Mian SA, Rouault-Pierre K, Smith AS, Seidl T, Kulasekararaj AG, Mohamedali AM, Shinde S, Bonnet D, Mufti GJ: SF3B1 mutant clones from patients with refractory anaemia with ringed sideroblasts (RARS) originate from the early haematopoietic stem cells and maintain their engraftment potential. Blood (ASH Annual Meeting). 2013, 122: 262-
Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM: Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood. 2011, 117: 2681-90. 10.1182/blood-2010-02-267906.
Wegrzyn J, Lam JC, Karsan A: Mouse models of myelodysplastic syndromes. Leuk Res. 2011, 35: 853-62. 10.1016/j.leukres.2011.03.007.
Matsunawa M, Yamamoto R, Sanada M, Sato-Otsubo A, Shiozawa Y, Yoshida K, Otsu M, Shiraishi Y, Miyano S, Isono K, Koseki H, Nakauchi H, Ogawa S: Haploinsufficiency of Sf3b1 leads to compromised stem cell function but not to myelodysplasia. Leukemia. 2014, 28: 1844-10.1038/leu.2014.73. doi:10.1038/leu.2014.73
Sekeres MA, Schoonen WM, Kantarjian H, List A, Fryzek J, Paquette R, Maciejewski JP: Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys. J Natl Cancer Inst. 2008, 100: 1542-51. 10.1093/jnci/djn349.
Chen TC, Hou HA, Chou WC, Tang JL, Kuo YY, Chen CY, Tseng MH, Huang CF, Lai YJ, Chiang YC, Lee FY, Liu MC, Liu CW, Liu CY, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Tien HF: Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer Journal. 2014, 4: e177-10.1038/bcj.2013.74.
Wang J, Li Z, He Y, Pan F, Chen S, Rhodes S, Nguyen L, Yuan J, Jiang L, Yang X, Weeks O, Liu Z, Zhou J, Ni H, Cai CL, Xu M, Yang FC: Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. Blood. 2014, 123: 541-53. 10.1182/blood-2013-05-500272.
Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y, Nakajima H, Nosaka T, Inaba T, Kitamura T: AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood. 2008, 111: 4297-308. 10.1182/blood-2007-01-068346.
Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11: R25-10.1186/gb-2010-11-3-r25.
Law CW, Chen Y, Shi W, Smyth GK: Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15: R29-10.1186/gb-2014-15-2-r29.
Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statis Soc B. 1995, 57: 289-300.
Wu D, Smyth GK: Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012, 40: e133-10.1093/nar/gks461.
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011, 27: 1739-1740. 10.1093/bioinformatics/btr260.