Thiết kế bạc lăn rãnh xoáy nhằm cải thiện hiệu suất tách huyết tương trong máy bơm máu quay
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kosaka R, Yada T, Nishida M, Maruyama O, Yamane T. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis. Artif Organs. 2013;37:778–85.
Kishimoto S, Takewa Y, Tsukiya T, Mizuno T, Date K, Sumikura H, et al. Novel temporary left ventricular assist system with hydrodynamically levitated bearing pump for bridge to decision: initial preclinical assessment in a goat model. J Artif Organs. 2017;21:23–30.
Gu L, Eliott G, Jurg S. A review of grooved dynamic gas bearings. Appl Mech Rev. 2020. https://doi.org/10.1115/1.4044191.
Kink T, Helmut R. Concept for a new hydrodynamic blood bearing for miniature blood pumps. Artif Organs. 2004;28:916–20.
Chan WK, Ooi KT, Loh YC. Numerical and in vitro investigations of pressure rise in a new hydrodynamic blood bearing. Artif Organs. 2007;31:434–40.
Han Q, Zou J, Ruan X, Fu X, Yang H. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump. Artif Organs. 2012;36:739–46.
Amaral F, Groß HS, Timms D, Egger C, Steinseifer U, Schmitz RT. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump. Artif Organs. 2013;37:866–74.
Murashige T, Kosaka R, Sakota D, Nishida M, Kawaguchi Y, Yamane T, et al. Evaluation of a spiral groove geometry for improvement of hemolysis level in a hydrodynamically levitated centrifugal blood pump. Artif Organs. 2015;39:710–4.
Kosaka R, Nishida M, Maruyama O, Yambe T, Imachi K, Yamane T. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller. Bio-Med Mater Eng. 2013;23:37–47.
Yamane T, Maruyama O, Nishida M, Kosaka R, Sugiyama D, Miyamoto Y, et al. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump. J Artif Organs. 2007;10:71–6.
Kosaka R, Sakota D, Nishida M, Maruyama O, Yamane T. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size. J Artif Organs. 2021;24:157–63.
Leslie LJ, Marshall LJ, Devitt A, Hilton A, Tansley GD. Cell exclusion in Couette flow: evaluation through flow visualization and mechanical forces. Artif Organs. 2013;37:267–75.
Murashige T, Kosaka R, Sakota D, Nishida M, Kawaguchi Y, Yamane T et al. Evaluation of erythrocyte flow at a bearing gap in a hydrodynamically levitated centrifugal blood pump. Proc. IEEE EMBC 2015;270–3
Murashige T, Sakota D, Kosaka R, Nishida M, Kawaguchi Y, Yamane T, et al. Plasma skimming in a spiral groove bearing of a centrifugal blood pump. Artif Organs. 2016;40:856–66.
Sakota D, Kondo K, Kosaka R, Nishida M, Maruyama O. Plasma skimming efficiency of human blood in the spiral groove bearing of a centrifugal blood pump. J Artif Organs. 2021;24:126–34.
Jiang M, Sakota D, Kosaka R, Hijikata W. Analysis of plasma skimming within a hydrodynamic bearing gap for designing spiral groove bearings in rotary blood pumps. Proc. IEEE EMBC 2019;1213–17