Các thiết bị spintronic: một lựa chọn đầy hứa hẹn cho các thiết bị CMOS

Prashanth Barla1, Vinod Kumar Joshi1, Somashekara Bhat1
1Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

Tóm tắt

Tóm tắt

Lĩnh vực spintronics đã thu hút sự chú ý mạnh mẽ gần đây nhờ khả năng cung cấp giải pháp cho vấn đề tiêu tán năng lượng gia tăng trong các mạch điện tử trong khi công nghệ đang thu nhỏ lại. Các cấu trúc dựa trên spintronic sử dụng mức độ tự do quay của electron, điều này làm cho chúng trở nên độc đáo với độ rò rỉ chờ bằng không, tiêu thụ điện năng thấp, độ bền vô hạn, khả năng đọc và ghi tốt, tính phi hành và khả năng tích hợp 3D dễ dàng với các mạch điện tử hiện nay dựa trên công nghệ CMOS. Tất cả những ưu điểm này đã thúc đẩy các hoạt động nghiên cứu tích cực để áp dụng các thiết bị spintronic vào các đơn vị bộ nhớ và cũng tái định nghĩa khái niệm kiến trúc xử lý trong bộ nhớ cho tương lai. Bài báo tổng quan này khám ph á những mốc quan trọng thiết yếu trong lĩnh vực tiến hóa của spintronics. Nó bao gồm nhiều hiện tượng vật lý khác nhau như hiệu ứng từ trở khổng lồ, hiệu ứng từ trở đường hầm, mô men xoắn truyền spin, hiệu ứng Hall spin, hiệu ứng dị hướng từ điều khiển điện áp, và chuyển động của tường miền / skyrmions do dòng điện gây ra. Hơn nữa, nhiều thiết bị spintronic như van spin, mối nối đường hầm từ, bộ nhớ đường đua dựa trên tường miền, các thiết bị logic toàn spin, và gần đây là skyrmions đang rung chuyển và các thiết bị dựa trên từ tính / silic lai cũng được thảo luận. Một mô tả chi tiết về các cơ chế chuyển đổi khác nhau để ghi thông tin vào những thiết bị spintronic này cũng được xem xét. Một cái nhìn tổng quan về các thiết bị dựa trên từ tính / silic lai có khả năng được sử dụng cho kiến trúc xử lý trong bộ nhớ (logic trong bộ nhớ) trong tương lai gần được mô tả ở cuối. Trong bài báo này, chúng tôi đã cố gắng giới thiệu một lịch sử ngắn gọn, tình trạng hiện tại và triển vọng tương lai của lĩnh vực spintronics cho những người mới bắt đầu.

Từ khóa

#spintronics; thiết bị spintronic; điện tử; kiến trúc xử lý trong bộ nhớ; hiệu ứng từ trở; kháng quán tính spin

Tài liệu tham khảo

Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Hu, J.S., Irwin, M.J., Kandemir, M., Narayanan, V., et al.: Leakage current: Moore’s law meets static power. Computer 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885

Gariglio, S.: Electric control of a spin current has potential for low-power computing. Nature 580, 458–459 (2020). https://doi.org/10.1038/d41586-020-01099-w

Transistor count - Wikipedia, [Online; accessed Jul 2020] (Jun 2020). https://en.wikipedia.org/w/index.php?title=Transistor_count&oldid=964176266

Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530, 144 (2016). https://doi.org/10.1038/530144a

Lin, X., Yang, W., Wang, K.L., Zhao, W.: Two-dimensional spintronics for low-power electronics. Nat. Electron. 2(7), 274–283 (2019). https://doi.org/10.1038/s41928-019-0273-7

Liu, W., Wong, P.K.J., Xu, Y.: Hybrid spintronic materials: growth, structure and properties. Prog. Mater. Sci. 99, 27–105 (2019). https://doi.org/10.1016/j.pmatsci.2018.08.001

Joshi, V.K.: Spintronics: a contemporary review of emerging electronics devices. Eng. Sci. Technol. 19(3), 1503–1513 (2016). https://doi.org/10.1016/j.jestch.2016.05.002

Hanyu, T., Endoh, T., Suzuki, D., Koike, H., Ma, Y., Onizawa, N., Natsui, M., Ikeda, S., Ohno, H.: Standby-power-free integrated circuits using MTJ-based VLSI computing. Proc. IEEE 104(10), 1844–1863 (2016). https://doi.org/10.1109/JPROC.2016.2574939

Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.: Microarchitectural techniques for power gating of execution units. In: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, pp. 32–37 (2020). https://doi.org/10.1145/1013235.1013249

Lungu, A., Bose, P., Buyuktosunoglu, A., Sorin, D.J.: Dynamic power gating with quality guarantees. In: Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 377–382 (2020). https://doi.org/10.1145/1594233.1594331

Suri, M.: Applications of Emerging Memory Technology - Beyond Storage $$\vert$$ Manan Suri $$\vert$$ Springer, Springer Singapore (2020)

Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Hu, C.: FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47(12), 2320–2325 (2000). https://doi.org/10.1109/16.887014

Bohr, M.: The new era of scaling in an SoC world. IEEE (2009). https://doi.org/10.1109/ISSCC.2009.4977293

Lin, S., Kim, Y.-B., Lombardi, F.: A novel CNTFET-based ternary logic gate design. In: 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 435–438 (2009) https://doi.org/10.1109/MWSCAS.2009.5236063

Zhang, J., Bobba, S., Patil, N., Lin, A., Wong, H.-S. P., De Micheli, G., Mitra, S.: Carbon nanotube correlation: promising opportunity for CNFET circuit yield enhancement. In: Proceedings of the 47th Design Automation Conference, pp. 889–892 (2020). https://doi.org/10.1145/1837274.1837497

Yakout, S.M.: Spintronics: future technology for new data storage and communication devices. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05545-8

Chang, C.-Y.: The highlights in the nano world. Proc. IEEE 91(11), 1756–1764 (2003). https://doi.org/10.1109/JPROC.2003.818337

IEEE International Roadmap for Devices and Systems™ [Online; accessed 19 June 2020] (2020). https://irds.ieee.org

Dieny, B., Prejbeanu, I.L., Garello, K., Gambardella, P., Freitas, P., Lehndorff, R., Raberg, W., Ebels, U., Demokritov, S.O., Akerman, J., Deac, A., Pirro, P., Adelmann, C., Anane, A., Chumak, A.V., Hirohata, A., Mangin, S., Valenzuela, S.O., Onbaşlı, M.C., D’Aquino, M., Prenat, G., Finocchio, G., Lopez-Diaz, L., Chantrell, R., Chubykalo-Fesenko, O., Bortolotti, P.: Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020). https://doi.org/10.1038/s41928-020-0461-5

Puebla, J., Kim, J., Kondou, K., Otani, Y.: Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater. 1(24), 1–9 (2020). https://doi.org/10.1038/s43246-020-0022-5

Vedmedenko, E.Y., Kawakami, R.K., Sheka, D.D., Gambardella, P., Kirilyuk, A., Hirohata, A., Binek, C., Chubykalo-Fesenko, O., Sanvito, S., Kirby, B.J., Grollier, J., Everschor-Sitte, K., Kampfrath, T., You, C.-Y., Berger, A.: The 2020 magnetism roadmap. J. Phys. D Appl. Phys. 53(45), 453001 (2020). https://doi.org/10.1088/1361-6463/ab9d98

Joshi, V.K., Barla, P., Bhat, S., Kaushik, B.K.: From MTJ device to hybrid CMOS/MTJ circuits: a review. IEEE Access 8, 194105–194146 (2020). https://doi.org/10.1109/ACCESS.2020.3033023

Tsang, C., Fontana, R.E., Lin, T., Heim, D.E., Speriosu, V.S., Gurney, B.A., Williams, M.L.: Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans. Magn. 30(6), 3801–3806 (1994). https://doi.org/10.1109/20.333909

Bandyopadhyay, S., Cahay, M.: Introduction to Spintronics. CRC Press, Boca Raton (2015)

Zhao, W., Prenat, G.: Spintronics-Based Computing. Springer International Publishing, Berlin (2015). https://doi.org/10.1007/978-3-319-15180-9

Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). https://doi.org/10.1126/science.1065389

Chappert, C., Fert, A., Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007). https://doi.org/10.1038/nmat2024

Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004). https://doi.org/10.1103/RevModPhys.76.323

Endoh, T., Koike, H., Ikeda, S., Hanyu, T., Ohno, H.: An overview of nonvolatile emerging memories— spintronics for working memories. IEEE J. Emerging Sel. Top. Circuits Syst. 6(2), 109–119 (2016). https://doi.org/10.1109/JETCAS.2016.2547704

Liu, E.: Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium (2018)

Wolf, S.A., Lu, J., Stan, M.R., Chen, E., Treger, D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98(12), 2155–2168 (2010). https://doi.org/10.1109/JPROC.2010.2064150

Tudu, B., Tiwari, A.: Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 146, 329–341 (2017). https://doi.org/10.1016/j.vacuum.2017.01.031

Bläsing, R., Khan, A.A., Filippou, PCh., Garg, C., Hameed, F., Castrillon, J., Parkin, S.S.P.: Magnetic racetrack memory: from physics to the cusp of applications within a decade. In: Proceedings of IEEE, pp. 1–19 (2020). https://doi.org/10.1109/JPROC.2020.2975719

Khan, A.A., Hameed, F., Bläsing, R., Parkin, S.S.P., Castrillon, J.: ShiftsReduce: minimizing shifts in racetrack memory 4.0. ACM Trans. Archit. Code Optim. 16(4), 1–23 (2019). https://doi.org/10.1145/3372489

Heidecker, J.: MRAM Technology Status

Kryder, M.H., Kim, C.S.: After hard drives—what comes next? IEEE Trans. Magn. 45(10), 3406–3413 (2009). https://doi.org/10.1109/TMAG.2009.2024163

Kim, J., Paul, A., Crowell, P.A., Koester, S.J., Sapatnekar, S.S., Wang, J.-P., Kim, C.H.: Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor. Proc. IEEE 103(1), 106–130 (2014). https://doi.org/10.1109/JPROC.2014.2361767

Matsunaga, S., Hayakawa, J., Ikeda, S., Miura, K., Endoh, T., Ohno, H., Hanyu, T.: MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. In: Proceedings of Design, Automation & Test in Europe Conference, pp. 433–435 (2009). https://doi.org/10.1109/DATE.2009.5090704

Deng, E., Zhang, Y., Klein, J.-O., Ravelsona, D., Chappert, C., Zhao, W.: Low power magnetic full-adder based on spin transfer torque MRAM. IEEE Trans. Magn. 49(9), 4982–4987 (2013). https://doi.org/10.1109/TMAG.2013.2245911

Kang, W., Deng, E., Wang, Z., Zhao, W.: Spintronic logic-in-memory paradigms and implementations. In: Suri, M. (eds.) Applications of Emerging Memory Technology. Springer Series in Advanced Microelectronics, vol. 63, pp. 215–229 (2020). https://doi.org/10.1007/978-981-13-8379-3-9

Barla, P., Joshi, V.K., Bhat, S.: A novel low power and reduced transistor count magnetic arithmetic logic unit using hybrid STT-MTJ/CMOS circuit. IEEE Access 8, 6876–6889 (2020). https://doi.org/10.1109/ACCESS.2019.2963727

Barla, P., Shet, D., Joshi, V. K., Bhat, S.: Design and analysis of lim hybrid mtj/cmos logic gates. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 41–45 (2020). https://doi.org/10.1109/ICDCS48716.2020.243544

Souri, S.J., Banerjee, K., Mehrotra, A., Saraswat, K.C.: Multiple Si layer ICs: motivation, performance analysis, and design implications. In: Proceedings of 37th ACM Design Automation Conference, ACM, pp. 213–220 (2000). https://doi.org/10.1145/337292.337394

Deng, Y.S., Maly, W.: 2.5D system integration: a design driven system implementation schema. In: ASP-DAC 2004: Proceedings of Asia and South Pacific Design Automation Conference. IEEE Press, pp. 450–455 (2004). https://doi.org/10.1109/ASPDAC.2004.1337617

Tehrani, S., Slaughter, J.M., Chen, E., Durlam, M., Shi, J., DeHerren, M.: Progress and outlook for MRAM technology. IEEE Trans. Magn. 35(5), 2814–2819 (1999). https://doi.org/10.1109/20.800991

Verma, S., Kulkarni, A.A., Kaushik, B.K.: Spintronics-based devices to circuits: perspectives and challenges. IEEE Nanatechnol. Mag. 10(4), 13–28 (2016). https://doi.org/10.1109/MNANO.2016.2606683

Zhang, Y.: Compact modeling and hybrid circuit design for spintronic devices based on current-induced switching. Ph.D. thesis, Universite Paris Sud-Paris (2014)

Deng, E.: Design and development of low-power and reliable logic circuits based on spin-transfer torque magnetic tunnel junctions. Ph.D. thesis, Université Grenoble Alpes (France) (2017)

Datta, A., Nathasingh, D., Martis, R.J., Flanders, P.J., Graham, C.D.: Saturation and engineering magnetostriction of an iron-base amorphous alloy for power applications. J. Appl. Phys. 55(6), 1784–1786 (1984). https://doi.org/10.1063/1.333477

Klokholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Magn. 12(6), 819–821 (1976). https://doi.org/10.1109/TMAG.1976.1059251

Camara, I.S., Duquesne, J.-Y., Lemaître, A., Gourdon, C., Thevenard, L.: Field-free magnetization switching by an acoustic wave. Phys. Rev. Appl. 11(1), 014045 (2019). https://doi.org/10.1103/PhysRevApplied.11.014045

Thevenard, L., Camara, I.S., Majrab, S., Bernard, M., Rovillain, P., Lemaître, A., Gourdon, C., Duquesne, J.-Y.: Precessional magnetization switching by a surface acoustic wave. Phys. Rev. B 93(13), 134430 (2016). https://doi.org/10.1103/PhysRevB.93.134430

Kuszewski, P., Camara, I.S., Biarrotte, N., Becerra, L., von Bardeleben, J., Torres, W.S., Lemaître, A., Gourdon, C., Duquesne, J.-Y., Thevenard, L.: Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector. J. Phys. Condens. Matter 30(24), 244003 (2018). https://doi.org/10.1088/1361-648X/aac152

Liu, J., Zhang, Y., Li, C., Jin, W., Lefkidis, G., Hübner, W.: Magneto-straintronics on a co-coordinating metalloboronfullerene. Phys. Rev. B 102(2), 024416 (2020). https://doi.org/10.1103/PhysRevB.102.024416

Jaris, M., Yang, W., Berk, C., Schmidt, H.: Towards ultraefficient nanoscale straintronic microwave devices. Phys. Rev. B 101(21), 214421 (2020). https://doi.org/10.1103/PhysRevB.101.214421

Chen, Y., Song, M., Wei, B., Yang, X., Cui, H., Liu, J., Li, C.: Effect of nanomagnet geometry on reliability of energy-efficient straintronic spin neuron and memory: a size-dependent study. IEEE Magn. Lett. 11, 1–5 (2020). https://doi.org/10.1109/LMAG.2020.3017180

Cui, J., Hockel, J.L., Nordeen, P.K., Pisani, D.M., Liang, C.-Y., Carman, G.P., Lynch, C.S.: A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 103(23), 232905 (2013). https://doi.org/10.1063/1.4838216

D’Souza, N., Salehi Fashami, M., Bandyopadhyay, S., Atulasimha, J.: Experimental clocking of nanomagnets with strain for ultralow power boolean logic. Nano Lett. 16(2), 1069–1075 (2016). https://doi.org/10.1021/acs.nanolett.5b04205

Biswas, A.K., Atulasimha, J., Bandyopadhyay, S.: The straintronic spin-neuron. Nanotechnology 26(28), 285201 (2015). https://doi.org/10.1088/0957-4484/26/28/285201

Roy, K., Bandyopadhyay, S., Atulasimha, J.: Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99(6), 063108 (2011). https://doi.org/10.1063/1.3624900

Winters, D., Abeed, M.A., Sahoo, S., Barman, A., Bandyopadhyay, S.: Reliability of magnetoelastic switching of nonideal nanomagnets with defects: a case study for the viability of straintronic logic and memory. Phys. Rev. Appl. 12(3), 034010 (2019). https://doi.org/10.1103/PhysRevApplied.12.034010

Maurice, D.P.A., Howard, F.R.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928). https://doi.org/10.1098/rspa.1928.0023

Roup, R.R., Kilby, J.S.: Electrical circuit elements. US Patent 2,841,508 (1958)

Kilby, J.S.: Invention of the integrated circuit. IEEE Trans. Electron Devices 23(7), 648–654 (1976). https://doi.org/10.1109/T-ED.1976.18467

Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988). https://doi.org/10.1103/PhysRevLett.61.2472

Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989). https://doi.org/10.1103/PhysRevB.39.4828

Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990). https://doi.org/10.1063/1.102730

Shinjo, T.: Nanomagnetism and Spintronics. Elsevier, Amsterdam (2013)

Reig, C., Cubells-Beltrán, M.-D., Ramírez Muñoz, D.: Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9(10), 7919–7942 (2009). https://doi.org/10.3390/s91007919

Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43(1), 1297–1300(R) (1991). https://doi.org/10.1103/PhysRevB.43.1297

Coughlin, T.: 80 TB Hard Disk Drives, Forbes. https://www.forbes.com/sites/tomcoughlin/2020/02/12/80-tb-hard-disk-drives/#1dbf0bc348f7

Fong, X., Kim, Y., Yogendra, K., Fan, D., Sengupta, A., Raghunathan, A., Roy, K.: Spin-transfer torque devices for logic and memory: prospects and perspectives. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 1–22 (2015). https://doi.org/10.1109/TCAD.2015.2481793

Ji, Y., Hoffmann, A., Jiang, J.S., Bader, S.D.: Spin injection, diffusion, and detection in lateral spin-valves. Appl. Phys. Lett. 85(25), 6218–6220 (2004). https://doi.org/10.1063/1.1841455

Fukuma, Y., Wang, L., Idzuchi, H., Takahashi, S., Maekawa, S., Otani, Y.: Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat. Mater. 10(7), 527–531 (2011). https://doi.org/10.1038/nmat3046

Feng, Y.P., Shen, L., Yang, M., Wang, A., Zeng, M., Wu, Q., Chintalapati, S., Chang, C.-R.: Prospects of spintronics based on 2D materials. WIREs Comput. Mol. Sci. 7(5), e1313 (2017). https://doi.org/10.1002/wcms.1313

Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., Hillebrands, B.: Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

Samm, J., Gramich, J., Baumgartner, A., Weiss, M., Schönenberger, C.: Optimized fabrication and characterization of carbon nanotube spin valves. J. Appl. Phys. 115(17), 174309 (2014). https://doi.org/10.1063/1.4874919

Aurich, H., Baumgartner, A., Freitag, F., Eichler, A., Trbovic, J., Schönenberger, C.: Permalloy-based carbon nanotube spin-valve. Appl. Phys. Lett. 97(15), 153116 (2010). https://doi.org/10.1063/1.3502600

Kimura, T., Sato, T., Otani, Y.: Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Phys. Rev. Lett. 100(6), 066602 (2008). https://doi.org/10.1103/PhysRevLett.100.066602

Sasaki, T., Suzuki, T., Ando, Y., Koike, H., Oikawa, T., Suzuki, Y., Shiraishi, M.: Local magnetoresistance in Fe/MgO/Si lateral spin valve at room temperature. Appl. Phys. Lett. 104(5), 052404 (2014). https://doi.org/10.1063/1.4863818

Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54(3), 225–226 (1975)

Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995). https://doi.org/10.1103/PhysRevLett.74.3273

Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139(3), L231–L234 (1995). https://doi.org/10.1016/0304-8853(95)90001-2

Wang, D., Nordman, C., Daughton, J.M., Qian, Z., Fink, J.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40(4), 2269–2271 (2004). https://doi.org/10.1109/TMAG.2004.830219

Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004). https://doi.org/10.1038/nmat1257

Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y. M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93(8), 082508–1–082508–3. (2008). https://doi.org/10.1063/1.2976435

Hirohata, A., Sukegawa, H., Yanagihara, H., Žutić, I., Seki, T., Mizukami, S., Swaminathan, R.: Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 51(10), 1–11 (2015). https://doi.org/10.1109/TMAG.2015.2457393

Zheng, C., Zhu, K., de Freitas, S.C., Chang, J.-Y., Davies, J.E., Eames, P., Freitas, P.P., Kazakova, O., Kim, C., Leung, C.-W., Liou, S.-H., Ognev, A., Piramanayagam, S.N., Ripka, P., Samardak, A., Shin, K.-H., Tong, S.-Y., Tung, M.-J., Wang, S.X., Xue, S., Yin, X., Pong, P.W.T.: Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans. Magn. 55(4), 1–30 (2019). https://doi.org/10.1109/TMAG.2019.2896036

Wei, H.X., Qin, Q.H., Ma, M., Sharif, R., Han, X.F.: 80% tunneling magnetoresistance at room temperature for thin Al–O barrier magnetic tunnel junction with CoFeB as free and reference layers. J. Appl. Phys. 101(9), 09B501 (2007). https://doi.org/10.1063/1.2696590

Rishton, S.A., Lu, Y., Altman, R.A., Marley, A.C., Bian, X.P., Jahnes, C., Viswanathan, R., Xiao, G., Gallagher, W.J., Parkin, S.S.P.: Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron. Eng. 35(1), 249–252 (1997). https://doi.org/10.1016/S0167-9317(96)00107-4

Han, X.-F., Oogane, M., Kubota, H., Ando, Y., Miyazaki, T.: Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes. Appl. Phys. Lett. 77(2), 283–285 (2000). https://doi.org/10.1063/1.126951

Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J.: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 85(8), 5828–5833 (1999). https://doi.org/10.1063/1.369932

Bowen, M., Cros, V., Petroff, F., Fert, A., Martınez Boubeta, C., Costa-Krämer, J.L., Anguita, J.V., Cebollada, A., Briones, F., De Teresa, J., et al.: Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Appl. Phys. Lett. 79(11), 1655–1657 (2001) https://doi.org/10.1063/1.1404125

Popova, E., Faure-Vincent, J., Tiusan, C., Bellouard, C., Fischer, H., Hehn, M., Montaigne, F., Alnot, M., Andrieu, S., Schuhl, A., Snoeck, E., da Costa, V.: Epitaxial MgO layer for low-resistance and coupling-free magnetic tunnel junctions. Appl. Phys. Lett. 81(6), 1035–1037 (2002). https://doi.org/10.1063/1.1498153

Yuasa, S., Fukushima, A., Nagahama, T., Ando, K., Suzuki, Y.: High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn. J. Appl. Phys. 43(4B), L588–L590 (2004). https://doi.org/10.1143/jjap.43.l588

Yuasa, S., Fukushima, A., Kubota, H., Suzuki, Y., Ando, K.: Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial xn-CoMgOCo-df0dd magnetic tunnel junctions with bcc Co(001) electrodes. Appl. Phys. Lett. 89(4), 042505 (2006). https://doi.org/10.1063/1.2236268

Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004). https://doi.org/10.1038/nmat1256

Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K.: 230% room-temperature magnetoresistance in xn-CoFeBMgOCoFeB-7i2hd magnetic tunnel junctions. Appl. Phys. Lett. 86(9), 092502 (2005). https://doi.org/10.1063/1.1871344

Inomata, K., Okamura, S., Goto, R., Tezuka, N.: Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure. Jpn. J. Appl. Phys. 42(Part 2, No. 4B), L419–L422 (2003). https://doi.org/10.1143/jjap.42.l419

Ishikawa, T., Hakamata, S., Matsuda, K.-I., Uemura, T., Yamamoto, M.: Fabrication of fully epitaxial xn-Co2MnSiMgOCo2MnSi-sl0kd magnetic tunnel junctions. J. Appl. Phys. 103(7), 07A919 (2008). https://doi.org/10.1063/1.2843756

Kämmerer, S., Thomas, A., Hütten, A., Reiss, G.: Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions. Appl. Phys. Lett. 85(1), 79–81 (2004). https://doi.org/10.1063/1.1769082

Marukame, T., Ishikawa, T., Hakamata, S., Matsuda, K.-I., Uemura, T., Yamamoto, M.: Highly spin-polarized tunneling in fully epitaxial Co2Cr0.6Fe0.xn–4AlMgOCo50Fe50-sj9hd magnetic tunnel junctions with exchange biasing. Appl. Phys. Lett. 90(1), 012508 (2007). https://doi.org/10.1063/1.2428412

Sakuraba, Y., Nakata, J., Oogane, M., Kubota, H., Ando, Y., Sakuma, A., Miyazaki, T.: Huge spin-polarization of L21-ordered Co2MnSi epitaxial Heusler alloy film. Jpn. J. Appl. Phys. 44(No. 35), L1100–L1102 (2005). https://doi.org/10.1143/jjap.44.l1100

Tezuka, N., Ikeda, N., Mitsuhashi, F., Sugimoto, S.: Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy. Appl. Phys. Lett. 94(16), 162504 (2009). https://doi.org/10.1063/1.3116717

Tsunegi, S., Sakuraba, Y., Oogane, M., Takanashi, K., Ando, Y.: Large tunnel magnetoresistance in magnetic tunnel junctions using a Co2MnSi Heusler alloy electrode and a MgO barrier. Appl. Phys. Lett. 93(11), 112506 (2008). https://doi.org/10.1063/1.2987516

Wang, W., Sukegawa, H., Shan, R., Mitani, S., Inomata, K.: Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited Co2FeAl/MgO/CoFe magnetic tunnel junctions. Appl. Phys. Lett. 95(18), 182502 (2009). https://doi.org/10.1063/1.3258069

Ebke, D., Schmalhorst, J., Liu, N.-N., Thomas, A., Reiss, G., Hütten, A.: Large tunnel magnetoresistance in tunnel junctions with xn-Co2MnSiCo2FeSi-wj9h multilayer electrode. Appl. Phys. Lett. 89(16), 162506 (2006). https://doi.org/10.1063/1.2363939

Shan, R., Sukegawa, H., Wang, W.H., Kodzuka, M., Furubayashi, T., Ohkubo, T., Mitani, S.,  Inomata, K., Hono, K.: Demonstration of half-metallicity in fermi-level-tuned Heusler alloy $$\text{Co}_{2}\text{ FeAl}_{0.5}\text{ Si}_{0.5}$$ at room temperature. Phys. Rev. Lett. 102(24), 246601 (2009). https://doi.org/10.1103/PhysRevLett.102.246601

Sukegawa, H., Xiu, H., Ohkubo, T., Furubayashi, T., Niizeki, T., Wang, W., Kasai, S., Mitani, S., Inomata, K., Hono, K.: Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl. Phys. Lett. 96(21), 212505 (2010). https://doi.org/10.1063/1.3441409

Sukegawa, H., Mitani, S., Ohkubo, T., Inomata, K., Hono, K.: Low-resistive monocrystalline Mg–Al–O barrier magnetic tunnel junctions for spin-transfer magnetization switching. Appl. Phys. Lett. 103(14), 142409 (2013). https://doi.org/10.1063/1.4824134

Scheike, T., Sukegawa, H., Furubayashi, T., Wen, Z., Inomata, K., Ohkubo, T., Hono, K., Mitani, S.: Lattice-matched magnetic tunnel junctions using a Heusler alloy Co2FeAl and a cation-disorder spinel Mg–Al–O barrier. Appl. Phys. Lett. 105(24), 242407 (2014). https://doi.org/10.1063/1.4904716

Sukegawa, H., Miura, Y., Muramoto, S., Mitani, S., Niizeki, T., Ohkubo, T., Abe, K., Shirai, M., Inomata, K., Hono, K.: Enhanced tunnel magnetoresistance in a spinel oxide barrier with cation-site disorder. Phys. Rev. B 86(18), 184401 (2012). https://doi.org/10.1103/PhysRevB.86.184401

Scheike, T., Sukegawa, H., Inomata, K., Ohkubo, T., Hono, K., Mitani, S.: Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions. Appl. Phys. Express 9(5), 053004 (2016). https://doi.org/10.7567/apex.9.053004

Johnson, M.T., Bloemen, P.J.H., Broeder, F.J. A. d., de Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409–1458 (1996). https://doi.org/10.1088/0034-4885/59/11/002

Draaisma, H.J.G., de Jonge, W.J.M., Den Broeder, F.J.A.: Magnetic interface anisotropy in Pd/Co and Pd/Fe multilayers. J. Magn. Magn. Mater. 66(3), 351–355 (1987). https://doi.org/10.1016/0304-8853(87)90169-7

Engel, B.N., Akerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41(1), 132–136 (2005). https://doi.org/10.1109/TMAG.2004.840847

Prejbeanu, I.L., Kula, W., Ounadjela, K., Sousa, R.C., Redon, O., Dieny, B., Nozieres, J.-P.: Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40(4), 2625–2627 (2004). https://doi.org/10.1109/TMAG.2004.830395

Prejbeanu, I.L., Kerekes, M., Sousa, R.C., Sibuet, H., Redon, O., Dieny, B., Nozières, J.P.: Thermally assisted MRAM. J. Phys. Condens. Matter 19(16), 165218 (2007). https://doi.org/10.1088/0953-8984/19/16/165218

Prejbeanu, I.L., Bandiera, S., Alvarez-Hérault, J., Sousa, R.C., Dieny, B., Nozières, J.-P.: Thermally assisted MRAMs: ultimate scalability and logic functionalities. J. Phys. D Appl. Phys. 46(7), 074002 (2013). https://doi.org/10.1088/0022-3727/46/7/074002

Zhao, W., Belhaire, E., Chappert, C., Dieny, B., Prenat, G.: Tas-mram-based low-power high-speed runtime reconfiguration (rtr) fpga. ACM Trans. Reconfig. Technol. Syst. (TRETS) 2(2), 8 (2009)

Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996). https://doi.org/10.1103/PhysRevB.54.9353

Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1), L1–L7 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T.: Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84(16), 3118–3120 (2004). https://doi.org/10.1063/1.1707228

Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., Piramanayagam, S.N.: Spintronics based random access memory: a review. Mater. Today 20(9), 530–548 (2017). https://doi.org/10.1016/j.mattod.2017.07.007

Brataas, A., Kent, A.D., Ohno, H.: Current-induced torques in magnetic materials. Nat. Mater. 11(5), 372–381 (2012). https://doi.org/10.1038/nmat3311

Sun, J.Z.: Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62(1), 570–578 (2000). https://doi.org/10.1103/PhysRevB.62.570

Spin-transfer Torque MRAM Products$$\vert$$Everspin (2020). https://www.everspin.com/spin-transfer-torque-mram-products

Dieny, B., Chshiev, M.: Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89(2), 025008 (2017). https://doi.org/10.1103/RevModPhys.89.025008

Jinnai, B., Watanabe, K., Fukami, S., Ohno, H.: Scaling magnetic tunnel junction down to single-digit nanometers—challenges and prospects. Appl. Phys. Lett. 116(16), 160501 (2020). https://doi.org/10.1063/5.0004434

Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010). https://doi.org/10.1038/nmat2804

Song, Y.J., Lee, J.H., Shin, H.C., Lee, K.H., Suh, K., Kang, J.R., Pyo, S.S., Jung, H.T., Hwang, S.H., Koh, G.H., Oh, S.C., Park, S.O., Kim, J.K., Park, J.C., Kim, J., Hwang, K.H., Jeong, G.T., Lee, K.P., Jung, E.S.: Highly functional and reliable 8Mb STT-MRAM embedded in 28 nm logic. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27.2.1–27.2.4 (2016). https://doi.org/10.1109/IEDM.2016.7838491

Chung, S.-W., Kishi, T., Park, J.W., Yoshikawa, M., Park, K.S., Nagase, T., Sunouchi, K.,  Kanaya, H., Kim, G.C., Noma, K., Lee, M.S., Yamamoto, A., Rho, K.M., Tsuchida, K., Chung, S.J., Yi, J.Y., Kim, H.S., Chun, Y.S., Oyamatsu, H., Hong, S.J.: 4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27.1.1–27.1.4 (2016). https://doi.org/10.1109/IEDM.2016.7838490

Lu, Y., Zhong, T., Hsu, W., Kim, S., Lu, X., Kan, J.J., Park, C., Chen, W.C., Li, X., Zhu, X.,  Wang, P., Gottwald, M., Fatehi, J., Seward, L., Kim, J.P., Yu, N., Jan, G., Haq, J., Le, S., Wang, Y.J.,  Thomas, L., Zhu, J., Liu, H., Lee, Y.J., Tong, R.Y., Pi, K., Shen, D., He, R., Teng, Z., Lam, V., Annapragada, R., Torng, T., Wang, P.-K., Kang, S.H.: Fully functional perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient IOT applications. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 26.1.1–26.1.4 (2015). https://doi.org/10.1109/IEDM.2015.7409770

Yoda, H., Fujita, S., Shimomura, N., Kitagawa, E., Abe, K., Nomura, K., Noguchi, H., Ito, J.: Progress of STT-MRAM technology and the effect on normally-off computing systems. In: 2012 International Electron Devices Meeting, pp. 11.3.1–11.3.4 (2012). https://doi.org/10.1109/IEDM.2012.6479023

Sato, H., Yamanouchi, M., Ikeda, S., Fukami, S., Matsukura, F., Ohno, H.: Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Appl. Phys. Lett. 101(2), 022414 (2012). https://doi.org/10.1063/1.4736727

Sato, H., Enobio, E.C.I., Yamanouchi, M., Ikeda, S., Fukami, S., Kanai, S., Matsukura, F., Ohno, H.: Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11nm. Appl. Phys. Lett. 105(6), 062403 (2014). https://doi.org/10.1063/1.4892924

Worledge, D.C.: Theory of spin torque switching current for the double magnetic tunnel junction. IEEE Magn. Lett. 8, ArticleSequenceNumber:4306505 (2017). https://doi.org/10.1109/LMAG.2017.2707331

Cuchet, L., Rodmacq, B., Auffret, S., Sousa, R.C., Prejbeanu, I.L., Dieny, B.: Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer. J. Appl. Phys. 117(23), 233901 (2015). https://doi.org/10.1063/1.4922630

Thomas, L., Jan, G., Zhu, J., Liu, H., Lee, Y.-J., Le, S., Tong, R.-Y., Pi, K., Wang, Y.-J., Shen, D., He, R., Haq, J., Teng, J., Lam, V., Huang, K., Zhong, T., Torng, T., Wang, P.-K.: Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited). J. Appl. Phys. 115(17), 172615 (2014). https://doi.org/10.1063/1.4870917

Sbiaa, R., Law, R., Tan, E.-L., Liew, T.: Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer. J. Appl. Phys. 105(1), 013910 (2009). https://doi.org/10.1063/1.3055373

You, C.-Y.: Reduced spin transfer torque switching current density with non-collinear polarizer layer magnetization in magnetic multilayer systems. Appl. Phys. Lett. 100(25), 252413 (2012). https://doi.org/10.1063/1.4730376

Liu, H., Bedau, D., Backes, D., Katine, J.A., Langer, J., Kent, A.D.: Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010). https://doi.org/10.1063/1.3527962

Watanabe, K., Jinnai, B., Fukami, S., Sato, H., Ohno, H.: Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nat. Commun. 9(663), 1–6 (2018). https://doi.org/10.1038/s41467-018-03003-7

Perrissin, N., Lequeux, S., Strelkov, N., Vila, L., Buda-Prejbeanu, L., Auffret, S., Sousa, R.,  Prejbeanu, I., Dieny, B.: Highly thermally stable sub-20nm magnetic random-access memory based on perpendicular shape anisotropy. Nanoscale 10. https://doi.org/10.1039/C8NR01365A

Fukami, S., Anekawa, T., Zhang, C., Ohno, H.: A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11(7), 621–625 (2016). https://doi.org/10.1038/nnano.2016.29

Devolder, T., Hayakawa, J., Ito, K., Takahashi, H., Ikeda, S., Crozat, P., Zerounian, N., Kim, J.-V., Chappert, C., Ohno, H.: Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. Phys. Rev. Lett. 100(5), 057206 (2008). https://doi.org/10.1103/PhysRevLett.100.057206

Suzuki, D., Natsui, M., Mochizuki, A., Hanyu, T.: Cost-efficient self-terminated write driver for spin-transfer-torque RAM and logic. IEEE Trans. Magn. 50(11), 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2322387

Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B.: Improving write performance for STT-MRAM. IEEE Trans. Magn. 52(8), 1–11 (2016). https://doi.org/10.1109/TMAG.2016.2541629

Bishnoi, R., Oboril, F., Ebrahimi, M., Tahoori, M.B.: Self-timed read and write operations in STT-MRAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1783–1793 (2016). https://doi.org/10.1109/TVLSI.2015.2496363

Sayed, N., Bishnoi, R., Oboril, F., Tahoori, M.B.: A cross-layer adaptive approach for performance and power optimization in STT-MRAM. IEEE, pp. 791–796 (2018). https://doi.org/10.23919/DATE.2018.8342114

Monga, K., Malhotra, A., Chaturvedi, N., Gurunayaranan, S.: A novel low power non-volatile SRAM cell with self write termination. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2019). https://doi.org/10.1109/ICCCNT45670.2019.8944846

Gupta, M.K., Hasan, M.: Self-terminated write-assist technique for STT-RAM. IEEE Trans. Magn. 52(8), 1–6 (2016). https://doi.org/10.1109/TMAG.2016.2542785

Farkhani, H., Tohidi, M., Peiravi, A., Madsen, J.K., Moradi, F.: STT-RAM energy reduction using self-referenced differential write termination technique. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(2), 476–487 (2017). https://doi.org/10.1109/TVLSI.2016.2588585

Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B., Termination, asynchronous asymmetrical write, (AAWT) for a low power STT-MRAM. In : Design Automation Test in Europe Conference Exhibition (DATE), vol. 2014, pp. 1–6 (2014). https://doi.org/10.7873/DATE.2014.193

Bishnoi, R., Oboril, F., Ebrahimi, M., Tahoori, M.B.: Avoiding unnecessary write operations in STT-MRAM for low power implementation. IEEE 548–553 (2014). https://doi.org/10.1109/ISQED.2014.6783375

Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for STT-RAM using early write termination. In: IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers, vol. 2009, pp. 264–268 (2009)

Zhang, D., Zeng, L., Wang, G., Zhang, Y., Zhang, Y., Klein, J.O., Zhao, W.: High-speed, low-power, and error-free asynchronous write circuit for STT-MRAM and logic. IEEE Trans. Magn. 52(8), 1–4 (2016). https://doi.org/10.1109/TMAG.2016.2539519

Lakys, Y., Zhao, W.S., Devolder, T., Zhang, Y., Klein, J.-O., Ravelosona, D., Chappert, C.: Self-enabled “error-free” switching circuit for spin transfer torque MRAM and logic. IEEE Trans. Magn. 48(9), 2403–2406 (2012). https://doi.org/10.1109/TMAG.2012.2194790

Barla, P., Joshi, V.K., Bhat, S.: A novel self write-terminated driver for hybrid STT-MTJ/CMOS LIM structure. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2020.10.012

Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science 336(6081), 555–558 (2012). https://doi.org/10.1126/science.1218197

Pai, C.-F., Liu, L., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012). https://doi.org/10.1063/1.4753947

Cubukcu, M., Boulle, O., Drouard, M., Garello, K., Onur Avci, C., Mihai Miron, I., Langer, J.,  Ocker, B., Gambardella, P., Gaudin, G.: Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104(4), 042406 (2014). https://doi.org/10.1063/1.4863407

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010). https://doi.org/10.1103/RevModPhys.82.1539

Inoue, J., Ohno, H.: Taking the Hall effect for a spin. Science 309(5743), 2004–2005 (2005). https://doi.org/10.1126/science.1113956

D’Yakonov, M.I., Perel’, V.I.: Possibility of orienting electron spins with current. JETPL 13, 467. (1971) https://ui.adsabs.harvard.edu/abs/1971JETPL..13..467D/abstract

Francis, M.N., David, B.N.H.: The scattering of fast electrons by atomic nuclei. Proc. R. Soc. Lond. A 124(794), 425–442 (1929). https://doi.org/10.1098/rspa.1929.0127

Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83(9), 1834–1837 (1999). https://doi.org/10.1103/PhysRevLett.83.1834

Saitoh, E., Ueda, M., Miyajima, H., Tatara, G.: Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88(18), 182509 (2006). https://doi.org/10.1063/1.2199473

Smit, J.: The spontaneous hall effect in ferromagnetics II. Physica 24(1), 39–51 (1958). https://doi.org/10.1016/S0031-8914(58)93541-9

Zhang, S.: Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85(2), 393–396 (2000). https://doi.org/10.1103/PhysRevLett.85.393

Murakami, S., Nagaosa, N., Zhang, S.-C.: Dissipationless quantum spin current at room temperature. Science 301(5638), 1348–1351 (2003). https://doi.org/10.1126/science.1087128

Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92(12), 126603 (2004). https://doi.org/10.1103/PhysRevLett.92.126603

Brataas, A., Hals, K.M.D.: Spin–orbit torques in action. Nat. Nanotechnol. 9(2), 86–88 (2014). https://doi.org/10.1038/nnano.2014.8

Hoffmann, A.: Spin Hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013). https://doi.org/10.1109/TMAG.2013.2262947

Liu, L., Moriyama, T., Ralph, D.C., Buhrman, R.A.: Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106(3), 036601 (2011). https://doi.org/10.1103/PhysRevLett.106.036601

van den Brink, A., Cosemans, S., Cornelissen, S., Manfrini, M., Vaysset, A., Van Roy, W., Min, T., Swagten, H.J.M., Koopmans, B.: Spin-Hall-assisted magnetic random access memory. Appl. Phys. Lett. 104(1), 012403 (2014). https://doi.org/10.1063/1.4858465

Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.-T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L.: Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9(7), 548–554 (2014). https://doi.org/10.1038/nnano.2014.94

Lau, Y.-C., Betto, D., Rode, K., Coey, J.M.D., Stamenov, P.: Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11(9), 758–762 (2016). https://doi.org/10.1038/nnano.2016.84

Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11(1), 39–43 (2012). https://doi.org/10.1038/nmat3172

Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A.: Ferroelectric control of spin polarization. Science 327(5969), 1106–1110 (2010). https://doi.org/10.1126/science.1184028

Chu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7(6), 478–482 (2008). https://doi.org/10.1038/nmat2184

Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T., Suzuki, Y.: Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96(2), 022506 (2010). https://doi.org/10.1063/1.3279157

Wang, W.-G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2011). https://doi.org/10.1038/nmat3171

Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO$$_{3}$$ multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97(4), 047201 (2006). https://doi.org/10.1103/PhysRevLett.97.047201

Weisheit, M., Fähler, S., Marty, A., Souche, Y., Poinsignon, C., Givord, D.: Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315(5810), 349–351 (2007). https://doi.org/10.1126/science.1136629

Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009). https://doi.org/10.1038/nnano.2008.406

Endo, M., Kanai, S., Ikeda, S., Matsukura, F., Ohno, H.: Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96(21), 212503 (2010). https://doi.org/10.1063/1.3429592

Nikonov, D.E., Young, I.A.: Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29(18), 2109–2115 (2014). https://doi.org/10.1557/jmr.2014.243

Grezes, C., Ebrahimi, F., Alzate, J.G., Cai, X., Katine, J.A., Langer, J., Ocker, B., Khalili Amiri, P., Wang, K.L.: Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108(1), 012403 (2016). https://doi.org/10.1063/1.4939446

Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H.: Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104(21), 212406 (2014). https://doi.org/10.1063/1.4880720

Kanai, S., Matsukura, F., Ohno, H.: Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance. Appl. Phys. Lett. 108(19), 192406 (2016). https://doi.org/10.1063/1.4948763

Alzate, J., Amiri, P., Cherepov, S., Zhu, J., Upadhyaya, P., Lewis, M., Krivorotov, I., Katine, J.,  Langer, J., Galatsis, K., et al.: Voltage-induced switching of cofeb-mgo magnetic tunnel junctions. In: 56th Conference on Magnetism and Magnetic Materials, pp. EG–11 (2011)

Amiri, P.K., Wang, K.L.: Voltage-controlled magnetic anisotropy in spintronic devices. SPIN 02(03), 1240002 (2012). https://doi.org/10.1142/S2010324712400024

Ikeda, S., Sato, H., Yamanouchi, M., Gan, H., Miura, K., Mizunuma, K., Kanai, S., Fukami, S., Matsukura, F., Kasai, N., Ohno, H.: Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI. SPIN 02(03), 1240003 (2012). https://doi.org/10.1142/S2010324712400036

Song, C., Cui, B., Li, F., Zhou, X., Pan, F.: Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater Sci. 87, 33–82 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.002

Niranjan, M.K., Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96(22), 222504 (2010). https://doi.org/10.1063/1.3443658

Velev J., P., Jaswal S., S., Tsymbal E., Y.: Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc. A 369(1948), 3069–3097 (2011). https://doi.org/10.1098/rsta.2010.0344

Barnes, S.E., Ieda, J., Maekawa, S.: Rashba Spin–orbit anisotropy and the electric field control of magnetism. Sci. Rep. 4(4105), 1–5 (2014). https://doi.org/10.1038/srep04105

Kang, W., Ran, Y., Zhang, Y., Lv, W., Zhao, W.: Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications. IEEE Trans. Nanotechnol. 16(3), 387–395 (2017). https://doi.org/10.1109/TNANO.2017.2660530

Peng, S., Wang, M., Yang, H., Zeng, L., Nan, J., Zhou, J., Zhang, Y., Hallal, A., Chshiev, M., Wang, K.L., Zhang, Q., Zhao, W.: Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures. Sci. Rep. 5(18173), 1–6 (2015). https://doi.org/10.1038/srep18173

Kang, W., Zhang, L., Zhao, W., Klein, J.-O., Zhang, Y., Ravelosona, D., Chappert, C.: Yield and reliability improvement techniques for emerging nonvolatile STT-MRAM. IEEE J. Emerging Sel. Top. Circuits Syst. 5(1), 28–39 (2015). https://doi.org/10.1109/JETCAS.2014.2374291

Kanai, S., Yamanouchi, M., Ikeda, S., Nakatani, Y., Matsukura, F., Ohno, H.: Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101(12), 122403 (2012). https://doi.org/10.1063/1.4753816

Alzate, J.G., Amiri, P.K., Upadhyaya, P., Cherepov, S.S., Zhu, J., Lewis, M., Dorrance, R., Katine, J.A., Langer, J., Galatsis, K., Markovic, D., Krivorotov, I., Wang, K.L.: Voltage-induced switching of nanoscale magnetic tunnel junctions. In: 2012 International Electron Devices Meeting, pp. 29.5.1–29.5.4 (2013). https://doi.org/10.1109/IEDM.2012.6479130

Shiota, Y., Miwa, S., Nozaki, T., Bonell, F., Mizuochi, N., Shinjo, T., Kubota, H., Yuasa, S., Suzuki, Y.: Pulse voltage-induced dynamic magnetization switching in magnetic tunneling junctions with high resistance-area product. Appl. Phys. Lett. 101(10), 102406 (2012). https://doi.org/10.1063/1.4751035

Amiri, P.K., Wang, K.L., Galatsis, K.: Voltage-controlled magnetic anisotropy (vcma) switch and magneto-electric memory (meram). US Patent 9,129,691 (2015)

Kang, W., Ran, Y., Lv, W., Zhang, Y., Zhao, W.: High-speed, low-power, magnetic non-volatile flip-flop with voltage-controlled, magnetic anisotropy assistance. IEEE Magn. Lett. 7, 1–5 (2016). https://doi.org/10.1109/LMAG.2016.2604205

Wang, W.G., Chien, C.L.: Voltage-induced switching in magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Phys. D Appl. Phys. 46(7), 074004 (2013). https://doi.org/10.1088/0022-3727/46/7/074004

Amiri, M., Prenosil, V., Cvachovec, F.: Optimum filter-based discrimination of neutrons and gamma rays, pp. 1–7 (2015). https://doi.org/10.1109/ANIMMA.2015.7465552

Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based MRAM array. Microelectron. J. 104943 (2020). https://doi.org/10.1016/j.mejo.2020.104943

Weiss, P.: L’hypothèse du champ moléculaire et la propriété ferromagnétique

Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer Science & Business Media, Cham (2008)

Thomas, L., Hayashi, M., Jiang, X., Moriya, R., Rettner, C., Parkin, S.: Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315(5818), 1553–1556 (2007). https://doi.org/10.1126/science.1137662

Thomas, L., Hayashi, M., Jiang, X., Moriya, R., Rettner, C., Parkin, S.S.P.: Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443(7108), 197–200 (2006). https://doi.org/10.1038/nature05093

Lewis, E.R., Petit, D., O’Brien, L., Fernandez-Pacheco, A., Sampaio, J., Jausovec, A.-V., Zeng, H.T., Read, D.E., Cowburn, R.P.: Fast domain wall motion in magnetic comb structures. Nat. Mater. 9(12), 980–983 (2010). https://doi.org/10.1038/nmat2857

Berger, L.: Low-field magnetoresistance and domain drag in ferromagnets. J. Appl. Phys. 49(3), 2156–2161 (1978). https://doi.org/10.1063/1.324716

Berger, L.: Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55(6), 1954–1956 (1984). https://doi.org/10.1063/1.333530

Deb, S., Chattopadhyay, A.: Spintronic device-structure for low-energy XOR logic using domain wall motion. In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2019, pp. 1–5 (2019). https://doi.org/10.1109/ISCAS.2019.8702160

Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005). https://doi.org/10.1126/science.1108813

Xu, P., Xia, K., Gu, C., Tang, L., Yang, H., Li, J.: An all-metallic logic gate based on current-driven domain wall motion. Nat. Nanotechnol. 3(2), 97–100 (2008). https://doi.org/10.1038/nnano.2008.1

Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008). https://doi.org/10.1126/science.1145799

Huang, K., Zhao, R., Lian, Y.: Racetrack memory based hybrid look-up table (LUT) for low power reconfigurable computing. J. Parallel Distrib. Comput. 117, 127–137 (2018). https://doi.org/10.1016/j.jpdc.2018.02.018

Luo, Z., Hrabec, A., Dao, T.P., Sala, G., Finizio, S., Feng, J., Mayr, S., Raabe, J., Gambardella, P., Heyderman, L.J.: Current-driven magnetic domain-wall logic. Nature 579(7798), 214–218 (2020). https://doi.org/10.1038/s41586-020-2061-y

Roohi, A., Zand, R., DeMara, R.F.: A tunable majority gate-based full adder using current-induced domain wall nanomagnets. IEEE Trans. Magn. 52(8), 1–7 (2016). https://doi.org/10.1109/TMAG.2016.2540600

Dhull, S., Nisar, A., Kaushik, B.K.: High frequency current induced domain wall motion based nano oscillator. In: Spintronics XIII, Vol. 11470, International Society for Optics and Photonics, p. 114703Y (2020) https://doi.org/10.1117/12.2568313

Parkin, S.S.: Shiftable magnetic shift register and method of using the same. US Patent 6,834,005 (2004)

Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P.: Current-controlled magnetic domain-wall nanowire shift register. Science 320(5873), 209–211 (2008). https://doi.org/10.1126/science.1154587

Parkin, S., Yang, S.-H.: Memory on the racetrack. Nat. Nanotechnol. 10(3), 195–198 (2015). https://doi.org/10.1038/nnano.2015.41

Mittal, S.: A survey of techniques for architecting processor components using domain-wall memory. J. Emerg. Technol. Comput. Syst. 13(2), 1–25 (2016). https://doi.org/10.1145/2994550

Filippou, PCh., Jeong, J., Ferrante, Y., Yang, S.-H., Topuria, T., Samant, M.G., Parkin, S.S.P.: Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating. Nat. Commun. 9(4653), 1–10 (2018). https://doi.org/10.1038/s41467-018-07091-3

Venkatesan, R., Kozhikkottu, V.J., Sharad, M., Augustine, C., Raychowdhury, A., Roy, K., Raghunathan, A.: Cache design with domain wall memory. IEEE Trans. Comput. 65(4), 1010–1024 (2015). https://doi.org/10.1109/TC.2015.2506581

Sun, Z., Bi, X., Wu, W., Yoo, S., Li, H.: Array organization and data management exploration in racetrack memory. IEEE Trans. Comput. 65(4), 1041–1054 (2014). https://doi.org/10.1109/TC.2014.2360545

Wang, G., Zhang, Y., Zhang, B., Wu, B., Nan, J., Zhang, X., Zhang, Z., Klein, J.-O., Ravelosona, D., Wang, Z., Zhang, Y., Zhao, W.: Ultra-dense ring-shaped racetrack memory cache design. IEEE Trans. Circ. Syst. I 66(1), 215–225 (2018). https://doi.org/10.1109/TCSI.2018.2866932

Wang, S., Liang, Y., Zhang, C., Xie, X., Sun, G., Liu, Y., Wang, Y., Li, X.: Performance-centric register file design for GPUs using racetrack memory. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 25–30 (2016). https://doi.org/10.1109/ASPDAC.2016.7427984

Mao, M., Wen, W., Zhang, Y., Chen, Y., Li, H.: Exploration of GPGPU register file architecture using domain-wall-shift-write based racetrack memory. IEEE (2014). https://ieeexplore.ieee.org/abstract/document/6881523

Liang, Y., Wang, S.: Performance-centric optimization for racetrack memory based register file on GPUs. J. Comput. Sci. Technol. 31(1), 36–49 (2016). https://doi.org/10.1007/s11390-016-1610-1

Sun, G., Zhang, C., Li, H., Zhang, Y., Zhang, W., Gu, Y., Sun, Y., Klein, J.-O., Ravelosona, D.,  Liu, Y., Zhao, W., Yang, H.: From device to system: cross-layer design exploration of racetrack memory. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1018–1023 (2015). https://ieeexplore.ieee.org/abstract/document/7092539

Yang, S.-H., Ryu, K.-S., Parkin, S.: Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10(3), 221–226 (2015). https://doi.org/10.1038/nnano.2014.324

Bang, D., Van Thach, P., Awano, H.: Current-induced domain wall motion in antiferromagnetically coupled structures: fundamentals and applications. J. Sci. Adv. Mater. Devices 3(4), 389–398 (2018). https://doi.org/10.1016/j.jsamd.2018.09.003

Al Bahri, M., Borie, B., Jin, T. L., Sbiaa, R., Kläui, M., Piramanayagam, S. N.: Staggered magnetic nanowire devices for effective domain-wall pinning in racetrack memory. Phys. Rev. Appl. 11(2), 024023 (2019). https://doi.org/10.1103/PhysRevApplied.11.024023

Chen, T.-C., Parkin, S.S.: Method of fabricating data tracks for use in a magnetic shift register memory device. US Patent 6,955,926 (2005)

Shibata, J., Tatara, G., Kohno, H.: A brief review of field- and current-driven domain-wall motion. J. Phys. D Appl. Phys. 44(38), 384004 (2011). https://doi.org/10.1088/0022-3727/44/38/384004

Zhou, H., Shi, S., Nian, D., Cui, S., Luo, J., Qiu, Y., Yang, H., Zhu, M., Yu, G.: Voltage control of magnetic domain wall injection into strain-mediated multiferroic heterostructures. Nanoscale 12(27), 14479–14486 (2020). https://doi.org/10.1039/D0NR02595J

Miron, I.M., Moore, T., Szambolics, H., Buda-Prejbeanu, L.D., Auffret, S., Rodmacq, B., Pizzini, S., Vogel, J., Bonfim, M., Schuhl, A., Gaudin, G.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011). https://doi.org/10.1038/nmat3020

Emori, S., Bauer, U., Ahn, S.-M., Martinez, E., Beach, G.S.D.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013). https://doi.org/10.1038/nmat3675

Mihai Miron, I., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J.,  Gambardella, P.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9(3), 230–234 (2010). https://doi.org/10.1038/nmat2613

Ryu, K.-S., Thomas, L., Yang, S.-H., Parkin, S.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013). https://doi.org/10.1038/nnano.2013.102

Ryu, K.-S., Yang, S.-H., Thomas, L., Parkin, S.S.P.: Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5(3910), 1–8 (2014). https://doi.org/10.1038/ncomms4910

Yun, J., Li, D., Cui, B., Guo, X., Wu, K., Zhang, X., Wang, Y., Mao, J., Zuo, Y., Xi, L.: Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii-Moriya interaction. J. Phys. D Appl. Phys. 51(15), 155001 (2018). https://doi.org/10.1088/1361-6463/aab419

Pi, U.H., Won Kim, K., Bae, J.Y., Lee, S.C., Cho, Y.J., Kim, K.S., Seo, S.: Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97(16), 162507 (2010). https://doi.org/10.1063/1.3502596

Suzuki, T., Fukami, S., Ishiwata, N., Yamanouchi, M., Ikeda, S., Kasai, N., Ohno, H.: Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98(14), 142505 (2011). https://doi.org/10.1063/1.3579155

Yang, S.-H., Parkin, S.: Novel domain wall dynamics in synthetic antiferromagnets. J. Phys. Condens. Matter 29(30), 303001 (2017). https://doi.org/10.1088/1361-648x/aa752d

Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010). https://doi.org/10.1038/nnano.2010.31

Behin-Aein, B., Datta, S.: All-spin logic. IEEE, pp. 21–23 (2020). https://doi.org/10.1109/DRC.2010.5551948

An, Q., Su, L., Klein, J.-O., Beux, S.L., O’Connor, I., Zhao, W.: Full-adder circuit design based on all-spin logic device, pp. 163–168 (2015). https://doi.org/10.1109/NANOARCH.2015.7180606

Mankalale, M.: Design and optimization of low-power and high-speed spintronic logic devices. Ph.D. thesis, The university of Minnesota, USA (2020)

Augustine, C., Panagopoulos, G., Behin-Aein, B., Srinivasan, S., Sarkar, A., Roy, K.: Low-power functionality enhanced computation architecture using spin-based devices. In: 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 129–136 (2011). https://doi.org/10.1109/NANOARCH.2011.5941494

Wang, S., Yang, Y., Song, W., Cui, H., Li, C., Cai, L.: All-spin logic XOR gate implementation based on input interface. IET Circuits Devices Syst. 13(5), 607–613 (2019). https://doi.org/10.1049/iet-cds.2018.5187

An, Q., Beux, S.L., O’Connor, I., Klein, J.O., Zhao, W.: Arithmetic logic unit based on all-spin logic devices. IEEE, pp. 317–320 (2017). https://doi.org/10.1109/NEWCAS.2017.8010169

Bandyopadhyay, S., Cahay, M.: Electron spin for classical information processing: a brief survey of spin-based logic devices. Nanotechnology 20(41), 412001 (2009). https://doi.org/10.1088/0957-4484/20/41/412001

Alasad, Q., Lin, J., Yuan, J.-S., Awad, Deliang, A.: Resilient and secure hardware devices using ASL. ACM J. Emerg. Technol. Comput. Syst. 1(1), 1–26 (2020). https://doi.org/10.1145/3429982

Yang, M., Deng, Y., Wu, Z., Cai, K., Edmonds, K.W., Li, Y., Sheng, Y., Wang, S., Cui, Y., Luo, J., Ji, Y., Zheng, H.-Z., Wang, K.: Spin logic devices via electric field controlled magnetization reversal by spin–orbit torque. IEEE Electron Device Lett. 40(9), 1554–1557 (2019). https://doi.org/10.1109/LED.2019.2932479

Luo, Z., Xiong, C., Zhang, X., Guo, Z.-G., Cai, J., Zhang, X.: Extremely large magnetoresistance at low magnetic field by coupling the nonlinear transport effect and the anomalous Hall effect. Adv. Mater. 28(14), 2760–2764 (2016). https://doi.org/10.1002/adma.201504023

Nan, J., Zhang, K., Zhang, Y., Yan, S., Zhang, Z., Zheng, Z., Wang, G., Leng, Q., Zhang, Y., Zhao, W.: A diode-enhanced scheme for giant magnetoresistance amplification and reconfigurable logic. IEEE Access 8, 87584–87591 (2020). https://doi.org/10.1109/ACCESS.2020.2993460

Luo, Z., Lu, Z., Xiong, C., Zhu, T., Wu, W., Zhang, Q., Wu, H., Zhang, X., Zhang, X.: Reconfigurable magnetic logic combined with nonvolatile memory writing. Adv. Mater. 29(4), 1605027 (2017). https://doi.org/10.1002/adma.201605027

Pu, Y., Mou, H., Lu, Z., Nawaz, S., Wang, G., Zhang, Z., Yang, Y., Zhang, X., Zhang, X.: Speed enhancement of magnetic logic-memory device by insulator-to-metal transition. Appl. Phys. Lett. 117(2), 022407 (2020). https://doi.org/10.1063/5.0013301

Shoucair, F., Trajkovic, L.: Analysis and simulation of simple transistor structures exhibiting negative differential resistance, EECS Department, UC Berkeley, Berkeley CA

Zhang, K., Cao, K., Zhang, Y., Huang, Z., Cai, W., Wang, J., Nan, J., Wang, G., Zheng, Z., Chen, L., Zhang, Z., Zhang, Y., Yan, S., Zhao, W.: Rectified tunnel magnetoresistance device with high on/off ratio for in-memory computing. IEEE Electron Device Lett. 41(6), 928–931 (2020). https://doi.org/10.1109/LED.2020.2987211

Skyrme, T.H.R.: A non-linear field theory. In: Selected Papers, with Commentary, of Tony Hilton Royle Skyrme, vol. 3, World Scientific, pp. 195–206 (1994). https://doi.org/10.1142/9789812795922_0013

Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nuclear Phys. 31, 556–569 (1962). https://doi.org/10.1016/0029-5582(62)90775-7

Fert, A., Cros, V., Sampaio, J.: Skyrmions on the track. Nat. Nanotechnol. 8(3), 152–156 (2013). https://doi.org/10.1038/nnano.2013.29

Finocchio, G., Büttner, F., Tomasello, R., Carpentieri, M., Kläui, M.: Magnetic skyrmions: from fundamental to applications. J. Phys. D Appl. Phys. 49(42), 423001 (2016). https://doi.org/10.1088/0022-3727/49/42/423001

Pappas, C., Lelièvre-Berna, E., Falus, P., Bentley, P.M., Moskvin, E., Grigoriev, S., Fouquet, P., Farago, B.: Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102(19), 197202 (2009). https://doi.org/10.1103/PhysRevLett.102.197202

Hooft, G. t.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79(2), 276–284 (1974). https://doi.org/10.1016/0550-3213(74)90486-6

Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., Böni, P.: Skyrmion lattice in a chiral magnet. Science 323(5916), 915–919 (2009). https://doi.org/10.1126/science.1166767

Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Topological Hall effect in the $$A$$ phase of MnSi. Phys. Rev. Lett. 102(18), 186602 (2009). https://doi.org/10.1103/PhysRevLett.102.186602

Everschor, K.: Current-induced dynamics of chiral magnetic structures, Ph.D. thesis, Inaugural-Dissertation zur Erlangung des Doktorgrades, Universität zu Köln (2012)

Fert, A., Levy, P.M.: Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44(23), 1538–1541 (1980). https://doi.org/10.1103/PhysRevLett.44.1538

Fert, A.R.: Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59–60, 439–480 (1990). https://doi.org/10.4028/www.scientific.net/MSF.59-60.439

Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R.A., Everschor, K., Garst, M., Rosch, A.: Spin transfer torques in MnSi at ultralow current densities. Science 330(6011), 1648–1651 (2010). https://doi.org/10.1126/science.1195709

Everschor-Sitte, K., Masell, J., Reeve, R.M., Kläui, M.: Perspective: magnetic skyrmions—overview of recent progress in an active research field. J. Appl. Phys. 124(24), 240901 (2018). https://doi.org/10.1063/1.5048972

Schulz, T., Ritz, R., Bauer, A., Halder, M., Wagner, M., Franz, C., Pfleiderer, C., Everschor, K., Garst, M., Rosch, A.: Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8(4), 301–304 (2012). https://doi.org/10.1038/nphys2231

Tomasello, R., Martinez, E., Zivieri, R., Torres, L., Carpentieri, M., Finocchio, G.: A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4(6784), 1–7 (2014). https://doi.org/10.1038/srep06784

Zhang, X., Zhao, G.P., Fangohr, H., Liu, J.P., Xia, W.X., Xia, J., Morvan, F.J.: Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5(7643), 1–6 (2015). https://doi.org/10.1038/srep07643

Bessarab, P.F., Müller, G.P., Lobanov, I.S., Rybakov, F.N., Kiselev, N.S., Jónsson, H., Uzdin, V.M., Blügel, S., Bergqvist, L., Delin, A.: Lifetime of racetrack skyrmions. Sci. Rep. 8(3433), 1–10 (2018). https://doi.org/10.1038/s41598-018-21623-3

Chen, X., Kang, W., Zhu, D., Zhang, X., Lei, N., Zhang, Y., Zhou, Y., Zhao, W.: Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications. Appl. Phys. Lett. 111(20), 202406 (2017). https://doi.org/10.1063/1.5005953

Hrabec, A., Sampaio, J., Belmeguenai, M., Gross, I., Weil, R., Chérif, S.M., Stashkevich, A., Jacques, V., Thiaville, A., Rohart, S.: Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8(15765), 1–6 (2017). https://doi.org/10.1038/ncomms15765

Cortés-Ortuño, D., Wang, W., Beg, M., Pepper, R.A., Bisotti, M.-A., Carey, R., Vousden, M., Kluyver, T., Hovorka, O., Fangohr, H.: Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7(4060), 1–13 (2017). https://doi.org/10.1038/s41598-017-03391-8

Woo, S., Litzius, K., Krüger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Kläui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016). https://doi.org/10.1038/nmat4593

Jiang, W., Upadhyaya, P., Zhang, W., Yu, G., Jungfleisch, M.B., Fradin, F.Y., Pearson, J.E., Tserkovnyak, Y., Wang, K.L., Heinonen, O., Te Velthuis, S.G.E., Hoffmann, A.: Blowing magnetic skyrmion bubbles. Science 349(6245), 283–286 (2015). https://doi.org/10.1126/science.aaa1442

Yu, G., Upadhyaya, P., Shao, Q., Wu, H., Yin, G., Li, X., He, C., Jiang, W., Han, X., Amiri, P.K., Wang, K.L.: Room-temperature skyrmion shift device for memory application. Nano Lett. 17(1), 261–268 (2017). https://doi.org/10.1021/acs.nanolett.6b04010

Zang, J., Mostovoy, M., Han, J.H., Nagaosa, N.: Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107(13), 136804 (2011). https://doi.org/10.1103/PhysRevLett.107.136804

Zhang, X., Zhou, Y., Ezawa, M.: Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6(24795), 1–8 (2016). https://doi.org/10.1038/srep24795

Barker, J., Tretiakov, O.A.: Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116(14), 147203 (2016). https://doi.org/10.1103/PhysRevLett.116.147203

Kim, B.S., Shapere, A.D.: Skyrmions and Hall transport. Phys. Rev. Lett. 117(11), 116805 (2016). https://doi.org/10.1103/PhysRevLett.117.116805

Everschor-Sitte, K., Sitte, M., Valet, T., Abanov, A., Sinova, J.: Skyrmion production on demand by homogeneous DC currents. New J. Phys. 19(9), 092001 (2017). https://doi.org/10.1088/1367-2630/aa8569

Zhang, X., Ezawa, M., Zhou, Y.: Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5(9400), 1–8 (2015). https://doi.org/10.1038/srep09400

Nakatani, Y., Yamada, K., Hirohata, A.: Switching of Skyrmion chirality by local heating. Sci. Rep. 9(13475), 1–7 (2019). https://doi.org/10.1038/s41598-019-49875-7

Finocchio, G., Ricci, M., Tomasello, R., Giordano, A., Lanuzza, M., Puliafito, V., Burrascano, P., Azzerboni, B., Carpentieri, M.: Skyrmion based microwave detectors and harvesting. Appl. Phys. Lett. 107(26), 262401 (2015). https://doi.org/10.1063/1.4938539

Carpentieri, M., Tomasello, R., Zivieri, R., Finocchio, G.: Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya Interaction. Sci. Rep. 5(16184), 1–8 (2015). https://doi.org/10.1038/srep16184

Garcia-Sanchez, F., Sampaio, J., Reyren, N., Cros, V., Kim, J.-V.: A skyrmion-based spin-torque nano-oscillator. New J. Phys. 18(7), 075011 (2016). https://doi.org/10.1088/1367-2630/18/7/075011

Medlej, I., Hamadeh, A., Hassan, F.E.H.: Skyrmion based random bit generator. Physica B 579, 411900 (2020). https://doi.org/10.1016/j.physb.2019.411900

Yao, Y., Chen, X., Kang, W., Zhang, Y., Zhao, W.: Thermal brownian motion of skyrmion for true random number generation. IEEE Trans. Electron Devices 67(6), 2553–2558 (2020). https://doi.org/10.1109/TED.2020.2989420

Song, K.M., Jeong, J.-S., Pan, B., Zhang, X., Xia, J., Cha, S., Park, T.-E., Kim, K., Finizio, S., Raabe, J., Chang, J., Zhou, Y., Zhao, W., Kang, W., Ju, H., Woo, S.: Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3(3), 148–155 (2020). https://doi.org/10.1038/s41928-020-0385-0

Li, S., Kang, W., Zhang, X., Nie, T., Zhou, Y., Wang, K.L., Zhao, W.: Magnetic skyrmions for unconventional computing. Mater. Horiz. https://doi.org/10.1039/D0MH01603A

Back, C., Cros, V., Ebert, H., Everschor-Sitte, K., Fert, A., Garst, M., Ma, T., Mankovsky, S., Monchesky, T.L., Mostovoy, M., Nagaosa, N., Parkin, S.S.P., Pfleiderer, C., Reyren, N., Rosch, A., Taguchi, Y., Tokura, Y., von Bergmann, K., Zang, J.: The 2020 skyrmionics roadmap. J. Phys. D Appl. Phys. 53(36), 363001 (2020). https://doi.org/10.1088/1361-6463/ab8418