Các thiết bị spintronic: một lựa chọn đầy hứa hẹn cho các thiết bị CMOS
Tóm tắt
Lĩnh vực spintronics đã thu hút sự chú ý mạnh mẽ gần đây nhờ khả năng cung cấp giải pháp cho vấn đề tiêu tán năng lượng gia tăng trong các mạch điện tử trong khi công nghệ đang thu nhỏ lại. Các cấu trúc dựa trên spintronic sử dụng mức độ tự do quay của electron, điều này làm cho chúng trở nên độc đáo với độ rò rỉ chờ bằng không, tiêu thụ điện năng thấp, độ bền vô hạn, khả năng đọc và ghi tốt, tính phi hành và khả năng tích hợp 3D dễ dàng với các mạch điện tử hiện nay dựa trên công nghệ CMOS. Tất cả những ưu điểm này đã thúc đẩy các hoạt động nghiên cứu tích cực để áp dụng các thiết bị spintronic vào các đơn vị bộ nhớ và cũng tái định nghĩa khái niệm kiến trúc xử lý trong bộ nhớ cho tương lai. Bài báo tổng quan này khám ph á những mốc quan trọng thiết yếu trong lĩnh vực tiến hóa của spintronics. Nó bao gồm nhiều hiện tượng vật lý khác nhau như hiệu ứng từ trở khổng lồ, hiệu ứng từ trở đường hầm, mô men xoắn truyền spin, hiệu ứng Hall spin, hiệu ứng dị hướng từ điều khiển điện áp, và chuyển động của tường miền / skyrmions do dòng điện gây ra. Hơn nữa, nhiều thiết bị spintronic như van spin, mối nối đường hầm từ, bộ nhớ đường đua dựa trên tường miền, các thiết bị logic toàn spin, và gần đây là skyrmions đang rung chuyển và các thiết bị dựa trên từ tính / silic lai cũng được thảo luận. Một mô tả chi tiết về các cơ chế chuyển đổi khác nhau để ghi thông tin vào những thiết bị spintronic này cũng được xem xét. Một cái nhìn tổng quan về các thiết bị dựa trên từ tính / silic lai có khả năng được sử dụng cho kiến trúc xử lý trong bộ nhớ (logic trong bộ nhớ) trong tương lai gần được mô tả ở cuối. Trong bài báo này, chúng tôi đã cố gắng giới thiệu một lịch sử ngắn gọn, tình trạng hiện tại và triển vọng tương lai của lĩnh vực spintronics cho những người mới bắt đầu.
Từ khóa
#spintronics; thiết bị spintronic; điện tử; kiến trúc xử lý trong bộ nhớ; hiệu ứng từ trở; kháng quán tính spinTài liệu tham khảo
Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Hu, J.S., Irwin, M.J., Kandemir, M., Narayanan, V., et al.: Leakage current: Moore’s law meets static power. Computer 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885
Gariglio, S.: Electric control of a spin current has potential for low-power computing. Nature 580, 458–459 (2020). https://doi.org/10.1038/d41586-020-01099-w
Transistor count - Wikipedia, [Online; accessed Jul 2020] (Jun 2020). https://en.wikipedia.org/w/index.php?title=Transistor_count&oldid=964176266
Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530, 144 (2016). https://doi.org/10.1038/530144a
Lin, X., Yang, W., Wang, K.L., Zhao, W.: Two-dimensional spintronics for low-power electronics. Nat. Electron. 2(7), 274–283 (2019). https://doi.org/10.1038/s41928-019-0273-7
Liu, W., Wong, P.K.J., Xu, Y.: Hybrid spintronic materials: growth, structure and properties. Prog. Mater. Sci. 99, 27–105 (2019). https://doi.org/10.1016/j.pmatsci.2018.08.001
Joshi, V.K.: Spintronics: a contemporary review of emerging electronics devices. Eng. Sci. Technol. 19(3), 1503–1513 (2016). https://doi.org/10.1016/j.jestch.2016.05.002
Hanyu, T., Endoh, T., Suzuki, D., Koike, H., Ma, Y., Onizawa, N., Natsui, M., Ikeda, S., Ohno, H.: Standby-power-free integrated circuits using MTJ-based VLSI computing. Proc. IEEE 104(10), 1844–1863 (2016). https://doi.org/10.1109/JPROC.2016.2574939
Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.: Microarchitectural techniques for power gating of execution units. In: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, pp. 32–37 (2020). https://doi.org/10.1145/1013235.1013249
Lungu, A., Bose, P., Buyuktosunoglu, A., Sorin, D.J.: Dynamic power gating with quality guarantees. In: Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 377–382 (2020). https://doi.org/10.1145/1594233.1594331
Suri, M.: Applications of Emerging Memory Technology - Beyond Storage $$\vert$$ Manan Suri $$\vert$$ Springer, Springer Singapore (2020)
Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Hu, C.: FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47(12), 2320–2325 (2000). https://doi.org/10.1109/16.887014
Bohr, M.: The new era of scaling in an SoC world. IEEE (2009). https://doi.org/10.1109/ISSCC.2009.4977293
Lin, S., Kim, Y.-B., Lombardi, F.: A novel CNTFET-based ternary logic gate design. In: 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 435–438 (2009) https://doi.org/10.1109/MWSCAS.2009.5236063
Zhang, J., Bobba, S., Patil, N., Lin, A., Wong, H.-S. P., De Micheli, G., Mitra, S.: Carbon nanotube correlation: promising opportunity for CNFET circuit yield enhancement. In: Proceedings of the 47th Design Automation Conference, pp. 889–892 (2020). https://doi.org/10.1145/1837274.1837497
Yakout, S.M.: Spintronics: future technology for new data storage and communication devices. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05545-8
Chang, C.-Y.: The highlights in the nano world. Proc. IEEE 91(11), 1756–1764 (2003). https://doi.org/10.1109/JPROC.2003.818337
IEEE International Roadmap for Devices and Systems™ [Online; accessed 19 June 2020] (2020). https://irds.ieee.org
Dieny, B., Prejbeanu, I.L., Garello, K., Gambardella, P., Freitas, P., Lehndorff, R., Raberg, W., Ebels, U., Demokritov, S.O., Akerman, J., Deac, A., Pirro, P., Adelmann, C., Anane, A., Chumak, A.V., Hirohata, A., Mangin, S., Valenzuela, S.O., Onbaşlı, M.C., D’Aquino, M., Prenat, G., Finocchio, G., Lopez-Diaz, L., Chantrell, R., Chubykalo-Fesenko, O., Bortolotti, P.: Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020). https://doi.org/10.1038/s41928-020-0461-5
Puebla, J., Kim, J., Kondou, K., Otani, Y.: Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater. 1(24), 1–9 (2020). https://doi.org/10.1038/s43246-020-0022-5
Vedmedenko, E.Y., Kawakami, R.K., Sheka, D.D., Gambardella, P., Kirilyuk, A., Hirohata, A., Binek, C., Chubykalo-Fesenko, O., Sanvito, S., Kirby, B.J., Grollier, J., Everschor-Sitte, K., Kampfrath, T., You, C.-Y., Berger, A.: The 2020 magnetism roadmap. J. Phys. D Appl. Phys. 53(45), 453001 (2020). https://doi.org/10.1088/1361-6463/ab9d98
Joshi, V.K., Barla, P., Bhat, S., Kaushik, B.K.: From MTJ device to hybrid CMOS/MTJ circuits: a review. IEEE Access 8, 194105–194146 (2020). https://doi.org/10.1109/ACCESS.2020.3033023
Tsang, C., Fontana, R.E., Lin, T., Heim, D.E., Speriosu, V.S., Gurney, B.A., Williams, M.L.: Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans. Magn. 30(6), 3801–3806 (1994). https://doi.org/10.1109/20.333909
Zhao, W., Prenat, G.: Spintronics-Based Computing. Springer International Publishing, Berlin (2015). https://doi.org/10.1007/978-3-319-15180-9
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). https://doi.org/10.1126/science.1065389
Chappert, C., Fert, A., Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007). https://doi.org/10.1038/nmat2024
Žutić, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323–410 (2004). https://doi.org/10.1103/RevModPhys.76.323
Endoh, T., Koike, H., Ikeda, S., Hanyu, T., Ohno, H.: An overview of nonvolatile emerging memories— spintronics for working memories. IEEE J. Emerging Sel. Top. Circuits Syst. 6(2), 109–119 (2016). https://doi.org/10.1109/JETCAS.2016.2547704
Liu, E.: Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium (2018)
Wolf, S.A., Lu, J., Stan, M.R., Chen, E., Treger, D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98(12), 2155–2168 (2010). https://doi.org/10.1109/JPROC.2010.2064150
Tudu, B., Tiwari, A.: Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 146, 329–341 (2017). https://doi.org/10.1016/j.vacuum.2017.01.031
Bläsing, R., Khan, A.A., Filippou, PCh., Garg, C., Hameed, F., Castrillon, J., Parkin, S.S.P.: Magnetic racetrack memory: from physics to the cusp of applications within a decade. In: Proceedings of IEEE, pp. 1–19 (2020). https://doi.org/10.1109/JPROC.2020.2975719
Khan, A.A., Hameed, F., Bläsing, R., Parkin, S.S.P., Castrillon, J.: ShiftsReduce: minimizing shifts in racetrack memory 4.0. ACM Trans. Archit. Code Optim. 16(4), 1–23 (2019). https://doi.org/10.1145/3372489
Heidecker, J.: MRAM Technology Status
Kryder, M.H., Kim, C.S.: After hard drives—what comes next? IEEE Trans. Magn. 45(10), 3406–3413 (2009). https://doi.org/10.1109/TMAG.2009.2024163
Kim, J., Paul, A., Crowell, P.A., Koester, S.J., Sapatnekar, S.S., Wang, J.-P., Kim, C.H.: Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor. Proc. IEEE 103(1), 106–130 (2014). https://doi.org/10.1109/JPROC.2014.2361767
Matsunaga, S., Hayakawa, J., Ikeda, S., Miura, K., Endoh, T., Ohno, H., Hanyu, T.: MTJ-based nonvolatile logic-in-memory circuit, future prospects and issues. In: Proceedings of Design, Automation & Test in Europe Conference, pp. 433–435 (2009). https://doi.org/10.1109/DATE.2009.5090704
Deng, E., Zhang, Y., Klein, J.-O., Ravelsona, D., Chappert, C., Zhao, W.: Low power magnetic full-adder based on spin transfer torque MRAM. IEEE Trans. Magn. 49(9), 4982–4987 (2013). https://doi.org/10.1109/TMAG.2013.2245911
Kang, W., Deng, E., Wang, Z., Zhao, W.: Spintronic logic-in-memory paradigms and implementations. In: Suri, M. (eds.) Applications of Emerging Memory Technology. Springer Series in Advanced Microelectronics, vol. 63, pp. 215–229 (2020). https://doi.org/10.1007/978-981-13-8379-3-9
Barla, P., Joshi, V.K., Bhat, S.: A novel low power and reduced transistor count magnetic arithmetic logic unit using hybrid STT-MTJ/CMOS circuit. IEEE Access 8, 6876–6889 (2020). https://doi.org/10.1109/ACCESS.2019.2963727
Barla, P., Shet, D., Joshi, V. K., Bhat, S.: Design and analysis of lim hybrid mtj/cmos logic gates. In: 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), pp. 41–45 (2020). https://doi.org/10.1109/ICDCS48716.2020.243544
Souri, S.J., Banerjee, K., Mehrotra, A., Saraswat, K.C.: Multiple Si layer ICs: motivation, performance analysis, and design implications. In: Proceedings of 37th ACM Design Automation Conference, ACM, pp. 213–220 (2000). https://doi.org/10.1145/337292.337394
Deng, Y.S., Maly, W.: 2.5D system integration: a design driven system implementation schema. In: ASP-DAC 2004: Proceedings of Asia and South Pacific Design Automation Conference. IEEE Press, pp. 450–455 (2004). https://doi.org/10.1109/ASPDAC.2004.1337617
Tehrani, S., Slaughter, J.M., Chen, E., Durlam, M., Shi, J., DeHerren, M.: Progress and outlook for MRAM technology. IEEE Trans. Magn. 35(5), 2814–2819 (1999). https://doi.org/10.1109/20.800991
Verma, S., Kulkarni, A.A., Kaushik, B.K.: Spintronics-based devices to circuits: perspectives and challenges. IEEE Nanatechnol. Mag. 10(4), 13–28 (2016). https://doi.org/10.1109/MNANO.2016.2606683
Zhang, Y.: Compact modeling and hybrid circuit design for spintronic devices based on current-induced switching. Ph.D. thesis, Universite Paris Sud-Paris (2014)
Deng, E.: Design and development of low-power and reliable logic circuits based on spin-transfer torque magnetic tunnel junctions. Ph.D. thesis, Université Grenoble Alpes (France) (2017)
Datta, A., Nathasingh, D., Martis, R.J., Flanders, P.J., Graham, C.D.: Saturation and engineering magnetostriction of an iron-base amorphous alloy for power applications. J. Appl. Phys. 55(6), 1784–1786 (1984). https://doi.org/10.1063/1.333477
Klokholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Magn. 12(6), 819–821 (1976). https://doi.org/10.1109/TMAG.1976.1059251
Camara, I.S., Duquesne, J.-Y., Lemaître, A., Gourdon, C., Thevenard, L.: Field-free magnetization switching by an acoustic wave. Phys. Rev. Appl. 11(1), 014045 (2019). https://doi.org/10.1103/PhysRevApplied.11.014045
Thevenard, L., Camara, I.S., Majrab, S., Bernard, M., Rovillain, P., Lemaître, A., Gourdon, C., Duquesne, J.-Y.: Precessional magnetization switching by a surface acoustic wave. Phys. Rev. B 93(13), 134430 (2016). https://doi.org/10.1103/PhysRevB.93.134430
Kuszewski, P., Camara, I.S., Biarrotte, N., Becerra, L., von Bardeleben, J., Torres, W.S., Lemaître, A., Gourdon, C., Duquesne, J.-Y., Thevenard, L.: Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector. J. Phys. Condens. Matter 30(24), 244003 (2018). https://doi.org/10.1088/1361-648X/aac152
Liu, J., Zhang, Y., Li, C., Jin, W., Lefkidis, G., Hübner, W.: Magneto-straintronics on a co-coordinating metalloboronfullerene. Phys. Rev. B 102(2), 024416 (2020). https://doi.org/10.1103/PhysRevB.102.024416
Jaris, M., Yang, W., Berk, C., Schmidt, H.: Towards ultraefficient nanoscale straintronic microwave devices. Phys. Rev. B 101(21), 214421 (2020). https://doi.org/10.1103/PhysRevB.101.214421
Chen, Y., Song, M., Wei, B., Yang, X., Cui, H., Liu, J., Li, C.: Effect of nanomagnet geometry on reliability of energy-efficient straintronic spin neuron and memory: a size-dependent study. IEEE Magn. Lett. 11, 1–5 (2020). https://doi.org/10.1109/LMAG.2020.3017180
Cui, J., Hockel, J.L., Nordeen, P.K., Pisani, D.M., Liang, C.-Y., Carman, G.P., Lynch, C.S.: A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 103(23), 232905 (2013). https://doi.org/10.1063/1.4838216
D’Souza, N., Salehi Fashami, M., Bandyopadhyay, S., Atulasimha, J.: Experimental clocking of nanomagnets with strain for ultralow power boolean logic. Nano Lett. 16(2), 1069–1075 (2016). https://doi.org/10.1021/acs.nanolett.5b04205
Biswas, A.K., Atulasimha, J., Bandyopadhyay, S.: The straintronic spin-neuron. Nanotechnology 26(28), 285201 (2015). https://doi.org/10.1088/0957-4484/26/28/285201
Roy, K., Bandyopadhyay, S., Atulasimha, J.: Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99(6), 063108 (2011). https://doi.org/10.1063/1.3624900
Winters, D., Abeed, M.A., Sahoo, S., Barman, A., Bandyopadhyay, S.: Reliability of magnetoelastic switching of nonideal nanomagnets with defects: a case study for the viability of straintronic logic and memory. Phys. Rev. Appl. 12(3), 034010 (2019). https://doi.org/10.1103/PhysRevApplied.12.034010
Maurice, D.P.A., Howard, F.R.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928). https://doi.org/10.1098/rspa.1928.0023
Roup, R.R., Kilby, J.S.: Electrical circuit elements. US Patent 2,841,508 (1958)
Kilby, J.S.: Invention of the integrated circuit. IEEE Trans. Electron Devices 23(7), 648–654 (1976). https://doi.org/10.1109/T-ED.1976.18467
Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988). https://doi.org/10.1103/PhysRevLett.61.2472
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989). https://doi.org/10.1103/PhysRevB.39.4828
Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990). https://doi.org/10.1063/1.102730
Shinjo, T.: Nanomagnetism and Spintronics. Elsevier, Amsterdam (2013)
Reig, C., Cubells-Beltrán, M.-D., Ramírez Muñoz, D.: Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9(10), 7919–7942 (2009). https://doi.org/10.3390/s91007919
Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43(1), 1297–1300(R) (1991). https://doi.org/10.1103/PhysRevB.43.1297
Coughlin, T.: 80 TB Hard Disk Drives, Forbes. https://www.forbes.com/sites/tomcoughlin/2020/02/12/80-tb-hard-disk-drives/#1dbf0bc348f7
Fong, X., Kim, Y., Yogendra, K., Fan, D., Sengupta, A., Raghunathan, A., Roy, K.: Spin-transfer torque devices for logic and memory: prospects and perspectives. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 1–22 (2015). https://doi.org/10.1109/TCAD.2015.2481793
Ji, Y., Hoffmann, A., Jiang, J.S., Bader, S.D.: Spin injection, diffusion, and detection in lateral spin-valves. Appl. Phys. Lett. 85(25), 6218–6220 (2004). https://doi.org/10.1063/1.1841455
Fukuma, Y., Wang, L., Idzuchi, H., Takahashi, S., Maekawa, S., Otani, Y.: Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat. Mater. 10(7), 527–531 (2011). https://doi.org/10.1038/nmat3046
Feng, Y.P., Shen, L., Yang, M., Wang, A., Zeng, M., Wu, Q., Chintalapati, S., Chang, C.-R.: Prospects of spintronics based on 2D materials. WIREs Comput. Mol. Sci. 7(5), e1313 (2017). https://doi.org/10.1002/wcms.1313
Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., Hillebrands, B.: Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
Samm, J., Gramich, J., Baumgartner, A., Weiss, M., Schönenberger, C.: Optimized fabrication and characterization of carbon nanotube spin valves. J. Appl. Phys. 115(17), 174309 (2014). https://doi.org/10.1063/1.4874919
Aurich, H., Baumgartner, A., Freitag, F., Eichler, A., Trbovic, J., Schönenberger, C.: Permalloy-based carbon nanotube spin-valve. Appl. Phys. Lett. 97(15), 153116 (2010). https://doi.org/10.1063/1.3502600
Kimura, T., Sato, T., Otani, Y.: Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Phys. Rev. Lett. 100(6), 066602 (2008). https://doi.org/10.1103/PhysRevLett.100.066602
Sasaki, T., Suzuki, T., Ando, Y., Koike, H., Oikawa, T., Suzuki, Y., Shiraishi, M.: Local magnetoresistance in Fe/MgO/Si lateral spin valve at room temperature. Appl. Phys. Lett. 104(5), 052404 (2014). https://doi.org/10.1063/1.4863818
Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 3273–3276 (1995). https://doi.org/10.1103/PhysRevLett.74.3273
Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139(3), L231–L234 (1995). https://doi.org/10.1016/0304-8853(95)90001-2
Wang, D., Nordman, C., Daughton, J.M., Qian, Z., Fink, J.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40(4), 2269–2271 (2004). https://doi.org/10.1109/TMAG.2004.830219
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004). https://doi.org/10.1038/nmat1257
Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y. M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93(8), 082508–1–082508–3. (2008). https://doi.org/10.1063/1.2976435
Hirohata, A., Sukegawa, H., Yanagihara, H., Žutić, I., Seki, T., Mizukami, S., Swaminathan, R.: Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 51(10), 1–11 (2015). https://doi.org/10.1109/TMAG.2015.2457393
Zheng, C., Zhu, K., de Freitas, S.C., Chang, J.-Y., Davies, J.E., Eames, P., Freitas, P.P., Kazakova, O., Kim, C., Leung, C.-W., Liou, S.-H., Ognev, A., Piramanayagam, S.N., Ripka, P., Samardak, A., Shin, K.-H., Tong, S.-Y., Tung, M.-J., Wang, S.X., Xue, S., Yin, X., Pong, P.W.T.: Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans. Magn. 55(4), 1–30 (2019). https://doi.org/10.1109/TMAG.2019.2896036
Wei, H.X., Qin, Q.H., Ma, M., Sharif, R., Han, X.F.: 80% tunneling magnetoresistance at room temperature for thin Al–O barrier magnetic tunnel junction with CoFeB as free and reference layers. J. Appl. Phys. 101(9), 09B501 (2007). https://doi.org/10.1063/1.2696590
Rishton, S.A., Lu, Y., Altman, R.A., Marley, A.C., Bian, X.P., Jahnes, C., Viswanathan, R., Xiao, G., Gallagher, W.J., Parkin, S.S.P.: Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron. Eng. 35(1), 249–252 (1997). https://doi.org/10.1016/S0167-9317(96)00107-4
Han, X.-F., Oogane, M., Kubota, H., Ando, Y., Miyazaki, T.: Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes. Appl. Phys. Lett. 77(2), 283–285 (2000). https://doi.org/10.1063/1.126951
Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J.: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 85(8), 5828–5833 (1999). https://doi.org/10.1063/1.369932
Bowen, M., Cros, V., Petroff, F., Fert, A., Martınez Boubeta, C., Costa-Krämer, J.L., Anguita, J.V., Cebollada, A., Briones, F., De Teresa, J., et al.: Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Appl. Phys. Lett. 79(11), 1655–1657 (2001) https://doi.org/10.1063/1.1404125
Popova, E., Faure-Vincent, J., Tiusan, C., Bellouard, C., Fischer, H., Hehn, M., Montaigne, F., Alnot, M., Andrieu, S., Schuhl, A., Snoeck, E., da Costa, V.: Epitaxial MgO layer for low-resistance and coupling-free magnetic tunnel junctions. Appl. Phys. Lett. 81(6), 1035–1037 (2002). https://doi.org/10.1063/1.1498153
Yuasa, S., Fukushima, A., Nagahama, T., Ando, K., Suzuki, Y.: High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn. J. Appl. Phys. 43(4B), L588–L590 (2004). https://doi.org/10.1143/jjap.43.l588
Yuasa, S., Fukushima, A., Kubota, H., Suzuki, Y., Ando, K.: Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial xn-CoMgOCo-df0dd magnetic tunnel junctions with bcc Co(001) electrodes. Appl. Phys. Lett. 89(4), 042505 (2006). https://doi.org/10.1063/1.2236268
Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004). https://doi.org/10.1038/nmat1256
Djayaprawira, D.D., Tsunekawa, K., Nagai, M., Maehara, H., Yamagata, S., Watanabe, N., Yuasa, S., Suzuki, Y., Ando, K.: 230% room-temperature magnetoresistance in xn-CoFeBMgOCoFeB-7i2hd magnetic tunnel junctions. Appl. Phys. Lett. 86(9), 092502 (2005). https://doi.org/10.1063/1.1871344
Inomata, K., Okamura, S., Goto, R., Tezuka, N.: Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure. Jpn. J. Appl. Phys. 42(Part 2, No. 4B), L419–L422 (2003). https://doi.org/10.1143/jjap.42.l419
Ishikawa, T., Hakamata, S., Matsuda, K.-I., Uemura, T., Yamamoto, M.: Fabrication of fully epitaxial xn-Co2MnSiMgOCo2MnSi-sl0kd magnetic tunnel junctions. J. Appl. Phys. 103(7), 07A919 (2008). https://doi.org/10.1063/1.2843756
Kämmerer, S., Thomas, A., Hütten, A., Reiss, G.: Co2MnSi Heusler alloy as magnetic electrodes in magnetic tunnel junctions. Appl. Phys. Lett. 85(1), 79–81 (2004). https://doi.org/10.1063/1.1769082
Marukame, T., Ishikawa, T., Hakamata, S., Matsuda, K.-I., Uemura, T., Yamamoto, M.: Highly spin-polarized tunneling in fully epitaxial Co2Cr0.6Fe0.xn–4AlMgOCo50Fe50-sj9hd magnetic tunnel junctions with exchange biasing. Appl. Phys. Lett. 90(1), 012508 (2007). https://doi.org/10.1063/1.2428412
Sakuraba, Y., Nakata, J., Oogane, M., Kubota, H., Ando, Y., Sakuma, A., Miyazaki, T.: Huge spin-polarization of L21-ordered Co2MnSi epitaxial Heusler alloy film. Jpn. J. Appl. Phys. 44(No. 35), L1100–L1102 (2005). https://doi.org/10.1143/jjap.44.l1100
Tezuka, N., Ikeda, N., Mitsuhashi, F., Sugimoto, S.: Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co2FeAl0.5Si0.5 electrodes fabricated by molecular beam epitaxy. Appl. Phys. Lett. 94(16), 162504 (2009). https://doi.org/10.1063/1.3116717
Tsunegi, S., Sakuraba, Y., Oogane, M., Takanashi, K., Ando, Y.: Large tunnel magnetoresistance in magnetic tunnel junctions using a Co2MnSi Heusler alloy electrode and a MgO barrier. Appl. Phys. Lett. 93(11), 112506 (2008). https://doi.org/10.1063/1.2987516
Wang, W., Sukegawa, H., Shan, R., Mitani, S., Inomata, K.: Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited Co2FeAl/MgO/CoFe magnetic tunnel junctions. Appl. Phys. Lett. 95(18), 182502 (2009). https://doi.org/10.1063/1.3258069
Ebke, D., Schmalhorst, J., Liu, N.-N., Thomas, A., Reiss, G., Hütten, A.: Large tunnel magnetoresistance in tunnel junctions with xn-Co2MnSiCo2FeSi-wj9h multilayer electrode. Appl. Phys. Lett. 89(16), 162506 (2006). https://doi.org/10.1063/1.2363939
Shan, R., Sukegawa, H., Wang, W.H., Kodzuka, M., Furubayashi, T., Ohkubo, T., Mitani, S., Inomata, K., Hono, K.: Demonstration of half-metallicity in fermi-level-tuned Heusler alloy $$\text{Co}_{2}\text{ FeAl}_{0.5}\text{ Si}_{0.5}$$ at room temperature. Phys. Rev. Lett. 102(24), 246601 (2009). https://doi.org/10.1103/PhysRevLett.102.246601
Sukegawa, H., Xiu, H., Ohkubo, T., Furubayashi, T., Niizeki, T., Wang, W., Kasai, S., Mitani, S., Inomata, K., Hono, K.: Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl. Phys. Lett. 96(21), 212505 (2010). https://doi.org/10.1063/1.3441409
Sukegawa, H., Mitani, S., Ohkubo, T., Inomata, K., Hono, K.: Low-resistive monocrystalline Mg–Al–O barrier magnetic tunnel junctions for spin-transfer magnetization switching. Appl. Phys. Lett. 103(14), 142409 (2013). https://doi.org/10.1063/1.4824134
Scheike, T., Sukegawa, H., Furubayashi, T., Wen, Z., Inomata, K., Ohkubo, T., Hono, K., Mitani, S.: Lattice-matched magnetic tunnel junctions using a Heusler alloy Co2FeAl and a cation-disorder spinel Mg–Al–O barrier. Appl. Phys. Lett. 105(24), 242407 (2014). https://doi.org/10.1063/1.4904716
Sukegawa, H., Miura, Y., Muramoto, S., Mitani, S., Niizeki, T., Ohkubo, T., Abe, K., Shirai, M., Inomata, K., Hono, K.: Enhanced tunnel magnetoresistance in a spinel oxide barrier with cation-site disorder. Phys. Rev. B 86(18), 184401 (2012). https://doi.org/10.1103/PhysRevB.86.184401
Scheike, T., Sukegawa, H., Inomata, K., Ohkubo, T., Hono, K., Mitani, S.: Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions. Appl. Phys. Express 9(5), 053004 (2016). https://doi.org/10.7567/apex.9.053004
Johnson, M.T., Bloemen, P.J.H., Broeder, F.J. A. d., de Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59(11), 1409–1458 (1996). https://doi.org/10.1088/0034-4885/59/11/002
Draaisma, H.J.G., de Jonge, W.J.M., Den Broeder, F.J.A.: Magnetic interface anisotropy in Pd/Co and Pd/Fe multilayers. J. Magn. Magn. Mater. 66(3), 351–355 (1987). https://doi.org/10.1016/0304-8853(87)90169-7
Engel, B.N., Akerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41(1), 132–136 (2005). https://doi.org/10.1109/TMAG.2004.840847
Prejbeanu, I.L., Kula, W., Ounadjela, K., Sousa, R.C., Redon, O., Dieny, B., Nozieres, J.-P.: Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions. IEEE Trans. Magn. 40(4), 2625–2627 (2004). https://doi.org/10.1109/TMAG.2004.830395
Prejbeanu, I.L., Kerekes, M., Sousa, R.C., Sibuet, H., Redon, O., Dieny, B., Nozières, J.P.: Thermally assisted MRAM. J. Phys. Condens. Matter 19(16), 165218 (2007). https://doi.org/10.1088/0953-8984/19/16/165218
Prejbeanu, I.L., Bandiera, S., Alvarez-Hérault, J., Sousa, R.C., Dieny, B., Nozières, J.-P.: Thermally assisted MRAMs: ultimate scalability and logic functionalities. J. Phys. D Appl. Phys. 46(7), 074002 (2013). https://doi.org/10.1088/0022-3727/46/7/074002
Zhao, W., Belhaire, E., Chappert, C., Dieny, B., Prenat, G.: Tas-mram-based low-power high-speed runtime reconfiguration (rtr) fpga. ACM Trans. Reconfig. Technol. Syst. (TRETS) 2(2), 8 (2009)
Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996). https://doi.org/10.1103/PhysRevB.54.9353
Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1), L1–L7 (1996). https://doi.org/10.1016/0304-8853(96)00062-5
Huai, Y., Albert, F., Nguyen, P., Pakala, M., Valet, T.: Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84(16), 3118–3120 (2004). https://doi.org/10.1063/1.1707228
Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., Piramanayagam, S.N.: Spintronics based random access memory: a review. Mater. Today 20(9), 530–548 (2017). https://doi.org/10.1016/j.mattod.2017.07.007
Brataas, A., Kent, A.D., Ohno, H.: Current-induced torques in magnetic materials. Nat. Mater. 11(5), 372–381 (2012). https://doi.org/10.1038/nmat3311
Sun, J.Z.: Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62(1), 570–578 (2000). https://doi.org/10.1103/PhysRevB.62.570
Spin-transfer Torque MRAM Products$$\vert$$Everspin (2020). https://www.everspin.com/spin-transfer-torque-mram-products
Dieny, B., Chshiev, M.: Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89(2), 025008 (2017). https://doi.org/10.1103/RevModPhys.89.025008
Jinnai, B., Watanabe, K., Fukami, S., Ohno, H.: Scaling magnetic tunnel junction down to single-digit nanometers—challenges and prospects. Appl. Phys. Lett. 116(16), 160501 (2020). https://doi.org/10.1063/5.0004434
Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F., Ohno, H.: A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010). https://doi.org/10.1038/nmat2804
Song, Y.J., Lee, J.H., Shin, H.C., Lee, K.H., Suh, K., Kang, J.R., Pyo, S.S., Jung, H.T., Hwang, S.H., Koh, G.H., Oh, S.C., Park, S.O., Kim, J.K., Park, J.C., Kim, J., Hwang, K.H., Jeong, G.T., Lee, K.P., Jung, E.S.: Highly functional and reliable 8Mb STT-MRAM embedded in 28 nm logic. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27.2.1–27.2.4 (2016). https://doi.org/10.1109/IEDM.2016.7838491
Chung, S.-W., Kishi, T., Park, J.W., Yoshikawa, M., Park, K.S., Nagase, T., Sunouchi, K., Kanaya, H., Kim, G.C., Noma, K., Lee, M.S., Yamamoto, A., Rho, K.M., Tsuchida, K., Chung, S.J., Yi, J.Y., Kim, H.S., Chun, Y.S., Oyamatsu, H., Hong, S.J.: 4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27.1.1–27.1.4 (2016). https://doi.org/10.1109/IEDM.2016.7838490
Lu, Y., Zhong, T., Hsu, W., Kim, S., Lu, X., Kan, J.J., Park, C., Chen, W.C., Li, X., Zhu, X., Wang, P., Gottwald, M., Fatehi, J., Seward, L., Kim, J.P., Yu, N., Jan, G., Haq, J., Le, S., Wang, Y.J., Thomas, L., Zhu, J., Liu, H., Lee, Y.J., Tong, R.Y., Pi, K., Shen, D., He, R., Teng, Z., Lam, V., Annapragada, R., Torng, T., Wang, P.-K., Kang, S.H.: Fully functional perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient IOT applications. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 26.1.1–26.1.4 (2015). https://doi.org/10.1109/IEDM.2015.7409770
Yoda, H., Fujita, S., Shimomura, N., Kitagawa, E., Abe, K., Nomura, K., Noguchi, H., Ito, J.: Progress of STT-MRAM technology and the effect on normally-off computing systems. In: 2012 International Electron Devices Meeting, pp. 11.3.1–11.3.4 (2012). https://doi.org/10.1109/IEDM.2012.6479023
Sato, H., Yamanouchi, M., Ikeda, S., Fukami, S., Matsukura, F., Ohno, H.: Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Appl. Phys. Lett. 101(2), 022414 (2012). https://doi.org/10.1063/1.4736727
Sato, H., Enobio, E.C.I., Yamanouchi, M., Ikeda, S., Fukami, S., Kanai, S., Matsukura, F., Ohno, H.: Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11nm. Appl. Phys. Lett. 105(6), 062403 (2014). https://doi.org/10.1063/1.4892924
Worledge, D.C.: Theory of spin torque switching current for the double magnetic tunnel junction. IEEE Magn. Lett. 8, ArticleSequenceNumber:4306505 (2017). https://doi.org/10.1109/LMAG.2017.2707331
Cuchet, L., Rodmacq, B., Auffret, S., Sousa, R.C., Prejbeanu, I.L., Dieny, B.: Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer. J. Appl. Phys. 117(23), 233901 (2015). https://doi.org/10.1063/1.4922630
Thomas, L., Jan, G., Zhu, J., Liu, H., Lee, Y.-J., Le, S., Tong, R.-Y., Pi, K., Wang, Y.-J., Shen, D., He, R., Haq, J., Teng, J., Lam, V., Huang, K., Zhong, T., Torng, T., Wang, P.-K.: Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited). J. Appl. Phys. 115(17), 172615 (2014). https://doi.org/10.1063/1.4870917
Sbiaa, R., Law, R., Tan, E.-L., Liew, T.: Spin transfer switching enhancement in perpendicular anisotropy magnetic tunnel junctions with a canted in-plane spin polarizer. J. Appl. Phys. 105(1), 013910 (2009). https://doi.org/10.1063/1.3055373
You, C.-Y.: Reduced spin transfer torque switching current density with non-collinear polarizer layer magnetization in magnetic multilayer systems. Appl. Phys. Lett. 100(25), 252413 (2012). https://doi.org/10.1063/1.4730376
Liu, H., Bedau, D., Backes, D., Katine, J.A., Langer, J., Kent, A.D.: Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010). https://doi.org/10.1063/1.3527962
Watanabe, K., Jinnai, B., Fukami, S., Sato, H., Ohno, H.: Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nat. Commun. 9(663), 1–6 (2018). https://doi.org/10.1038/s41467-018-03003-7
Perrissin, N., Lequeux, S., Strelkov, N., Vila, L., Buda-Prejbeanu, L., Auffret, S., Sousa, R., Prejbeanu, I., Dieny, B.: Highly thermally stable sub-20nm magnetic random-access memory based on perpendicular shape anisotropy. Nanoscale 10. https://doi.org/10.1039/C8NR01365A
Fukami, S., Anekawa, T., Zhang, C., Ohno, H.: A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11(7), 621–625 (2016). https://doi.org/10.1038/nnano.2016.29
Devolder, T., Hayakawa, J., Ito, K., Takahashi, H., Ikeda, S., Crozat, P., Zerounian, N., Kim, J.-V., Chappert, C., Ohno, H.: Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. Phys. Rev. Lett. 100(5), 057206 (2008). https://doi.org/10.1103/PhysRevLett.100.057206
Suzuki, D., Natsui, M., Mochizuki, A., Hanyu, T.: Cost-efficient self-terminated write driver for spin-transfer-torque RAM and logic. IEEE Trans. Magn. 50(11), 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2322387
Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B.: Improving write performance for STT-MRAM. IEEE Trans. Magn. 52(8), 1–11 (2016). https://doi.org/10.1109/TMAG.2016.2541629
Bishnoi, R., Oboril, F., Ebrahimi, M., Tahoori, M.B.: Self-timed read and write operations in STT-MRAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1783–1793 (2016). https://doi.org/10.1109/TVLSI.2015.2496363
Sayed, N., Bishnoi, R., Oboril, F., Tahoori, M.B.: A cross-layer adaptive approach for performance and power optimization in STT-MRAM. IEEE, pp. 791–796 (2018). https://doi.org/10.23919/DATE.2018.8342114
Monga, K., Malhotra, A., Chaturvedi, N., Gurunayaranan, S.: A novel low power non-volatile SRAM cell with self write termination. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2019). https://doi.org/10.1109/ICCCNT45670.2019.8944846
Gupta, M.K., Hasan, M.: Self-terminated write-assist technique for STT-RAM. IEEE Trans. Magn. 52(8), 1–6 (2016). https://doi.org/10.1109/TMAG.2016.2542785
Farkhani, H., Tohidi, M., Peiravi, A., Madsen, J.K., Moradi, F.: STT-RAM energy reduction using self-referenced differential write termination technique. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(2), 476–487 (2017). https://doi.org/10.1109/TVLSI.2016.2588585
Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B., Termination, asynchronous asymmetrical write, (AAWT) for a low power STT-MRAM. In : Design Automation Test in Europe Conference Exhibition (DATE), vol. 2014, pp. 1–6 (2014). https://doi.org/10.7873/DATE.2014.193
Bishnoi, R., Oboril, F., Ebrahimi, M., Tahoori, M.B.: Avoiding unnecessary write operations in STT-MRAM for low power implementation. IEEE 548–553 (2014). https://doi.org/10.1109/ISQED.2014.6783375
Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for STT-RAM using early write termination. In: IEEE/ACM International Conference on Computer-Aided Design—Digest of Technical Papers, vol. 2009, pp. 264–268 (2009)
Zhang, D., Zeng, L., Wang, G., Zhang, Y., Zhang, Y., Klein, J.O., Zhao, W.: High-speed, low-power, and error-free asynchronous write circuit for STT-MRAM and logic. IEEE Trans. Magn. 52(8), 1–4 (2016). https://doi.org/10.1109/TMAG.2016.2539519
Lakys, Y., Zhao, W.S., Devolder, T., Zhang, Y., Klein, J.-O., Ravelosona, D., Chappert, C.: Self-enabled “error-free” switching circuit for spin transfer torque MRAM and logic. IEEE Trans. Magn. 48(9), 2403–2406 (2012). https://doi.org/10.1109/TMAG.2012.2194790
Barla, P., Joshi, V.K., Bhat, S.: A novel self write-terminated driver for hybrid STT-MTJ/CMOS LIM structure. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2020.10.012
Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science 336(6081), 555–558 (2012). https://doi.org/10.1126/science.1218197
Pai, C.-F., Liu, L., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012). https://doi.org/10.1063/1.4753947
Cubukcu, M., Boulle, O., Drouard, M., Garello, K., Onur Avci, C., Mihai Miron, I., Langer, J., Ocker, B., Gambardella, P., Gaudin, G.: Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104(4), 042406 (2014). https://doi.org/10.1063/1.4863407
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82(2), 1539–1592 (2010). https://doi.org/10.1103/RevModPhys.82.1539
Inoue, J., Ohno, H.: Taking the Hall effect for a spin. Science 309(5743), 2004–2005 (2005). https://doi.org/10.1126/science.1113956
D’Yakonov, M.I., Perel’, V.I.: Possibility of orienting electron spins with current. JETPL 13, 467. (1971) https://ui.adsabs.harvard.edu/abs/1971JETPL..13..467D/abstract
Francis, M.N., David, B.N.H.: The scattering of fast electrons by atomic nuclei. Proc. R. Soc. Lond. A 124(794), 425–442 (1929). https://doi.org/10.1098/rspa.1929.0127
Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83(9), 1834–1837 (1999). https://doi.org/10.1103/PhysRevLett.83.1834
Saitoh, E., Ueda, M., Miyajima, H., Tatara, G.: Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88(18), 182509 (2006). https://doi.org/10.1063/1.2199473
Smit, J.: The spontaneous hall effect in ferromagnetics II. Physica 24(1), 39–51 (1958). https://doi.org/10.1016/S0031-8914(58)93541-9
Zhang, S.: Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85(2), 393–396 (2000). https://doi.org/10.1103/PhysRevLett.85.393
Murakami, S., Nagaosa, N., Zhang, S.-C.: Dissipationless quantum spin current at room temperature. Science 301(5638), 1348–1351 (2003). https://doi.org/10.1126/science.1087128
Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92(12), 126603 (2004). https://doi.org/10.1103/PhysRevLett.92.126603
Brataas, A., Hals, K.M.D.: Spin–orbit torques in action. Nat. Nanotechnol. 9(2), 86–88 (2014). https://doi.org/10.1038/nnano.2014.8
Hoffmann, A.: Spin Hall effects in metals. IEEE Trans. Magn. 49(10), 5172–5193 (2013). https://doi.org/10.1109/TMAG.2013.2262947
Liu, L., Moriyama, T., Ralph, D.C., Buhrman, R.A.: Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106(3), 036601 (2011). https://doi.org/10.1103/PhysRevLett.106.036601
van den Brink, A., Cosemans, S., Cornelissen, S., Manfrini, M., Vaysset, A., Van Roy, W., Min, T., Swagten, H.J.M., Koopmans, B.: Spin-Hall-assisted magnetic random access memory. Appl. Phys. Lett. 104(1), 012403 (2014). https://doi.org/10.1063/1.4858465
Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.-T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L.: Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9(7), 548–554 (2014). https://doi.org/10.1038/nnano.2014.94
Lau, Y.-C., Betto, D., Rode, K., Coey, J.M.D., Stamenov, P.: Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11(9), 758–762 (2016). https://doi.org/10.1038/nnano.2016.84
Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11(1), 39–43 (2012). https://doi.org/10.1038/nmat3172
Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A.: Ferroelectric control of spin polarization. Science 327(5969), 1106–1110 (2010). https://doi.org/10.1126/science.1184028
Chu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7(6), 478–482 (2008). https://doi.org/10.1038/nmat2184
Nozaki, T., Shiota, Y., Shiraishi, M., Shinjo, T., Suzuki, Y.: Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96(2), 022506 (2010). https://doi.org/10.1063/1.3279157
Wang, W.-G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2011). https://doi.org/10.1038/nmat3171
Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO$$_{3}$$ multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97(4), 047201 (2006). https://doi.org/10.1103/PhysRevLett.97.047201
Weisheit, M., Fähler, S., Marty, A., Souche, Y., Poinsignon, C., Givord, D.: Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315(5810), 349–351 (2007). https://doi.org/10.1126/science.1136629
Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y.: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009). https://doi.org/10.1038/nnano.2008.406
Endo, M., Kanai, S., Ikeda, S., Matsukura, F., Ohno, H.: Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96(21), 212503 (2010). https://doi.org/10.1063/1.3429592
Nikonov, D.E., Young, I.A.: Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29(18), 2109–2115 (2014). https://doi.org/10.1557/jmr.2014.243
Grezes, C., Ebrahimi, F., Alzate, J.G., Cai, X., Katine, J.A., Langer, J., Ocker, B., Khalili Amiri, P., Wang, K.L.: Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108(1), 012403 (2016). https://doi.org/10.1063/1.4939446
Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H.: Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104(21), 212406 (2014). https://doi.org/10.1063/1.4880720
Kanai, S., Matsukura, F., Ohno, H.: Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance. Appl. Phys. Lett. 108(19), 192406 (2016). https://doi.org/10.1063/1.4948763
Alzate, J., Amiri, P., Cherepov, S., Zhu, J., Upadhyaya, P., Lewis, M., Krivorotov, I., Katine, J., Langer, J., Galatsis, K., et al.: Voltage-induced switching of cofeb-mgo magnetic tunnel junctions. In: 56th Conference on Magnetism and Magnetic Materials, pp. EG–11 (2011)
Amiri, P.K., Wang, K.L.: Voltage-controlled magnetic anisotropy in spintronic devices. SPIN 02(03), 1240002 (2012). https://doi.org/10.1142/S2010324712400024
Ikeda, S., Sato, H., Yamanouchi, M., Gan, H., Miura, K., Mizunuma, K., Kanai, S., Fukami, S., Matsukura, F., Kasai, N., Ohno, H.: Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI. SPIN 02(03), 1240003 (2012). https://doi.org/10.1142/S2010324712400036
Song, C., Cui, B., Li, F., Zhou, X., Pan, F.: Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog. Mater Sci. 87, 33–82 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.002
Niranjan, M.K., Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96(22), 222504 (2010). https://doi.org/10.1063/1.3443658
Velev J., P., Jaswal S., S., Tsymbal E., Y.: Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc. A 369(1948), 3069–3097 (2011). https://doi.org/10.1098/rsta.2010.0344
Barnes, S.E., Ieda, J., Maekawa, S.: Rashba Spin–orbit anisotropy and the electric field control of magnetism. Sci. Rep. 4(4105), 1–5 (2014). https://doi.org/10.1038/srep04105
Kang, W., Ran, Y., Zhang, Y., Lv, W., Zhao, W.: Modeling and exploration of the voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-speed MRAM applications. IEEE Trans. Nanotechnol. 16(3), 387–395 (2017). https://doi.org/10.1109/TNANO.2017.2660530
Peng, S., Wang, M., Yang, H., Zeng, L., Nan, J., Zhou, J., Zhang, Y., Hallal, A., Chshiev, M., Wang, K.L., Zhang, Q., Zhao, W.: Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures. Sci. Rep. 5(18173), 1–6 (2015). https://doi.org/10.1038/srep18173
Kang, W., Zhang, L., Zhao, W., Klein, J.-O., Zhang, Y., Ravelosona, D., Chappert, C.: Yield and reliability improvement techniques for emerging nonvolatile STT-MRAM. IEEE J. Emerging Sel. Top. Circuits Syst. 5(1), 28–39 (2015). https://doi.org/10.1109/JETCAS.2014.2374291
Kanai, S., Yamanouchi, M., Ikeda, S., Nakatani, Y., Matsukura, F., Ohno, H.: Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101(12), 122403 (2012). https://doi.org/10.1063/1.4753816
Alzate, J.G., Amiri, P.K., Upadhyaya, P., Cherepov, S.S., Zhu, J., Lewis, M., Dorrance, R., Katine, J.A., Langer, J., Galatsis, K., Markovic, D., Krivorotov, I., Wang, K.L.: Voltage-induced switching of nanoscale magnetic tunnel junctions. In: 2012 International Electron Devices Meeting, pp. 29.5.1–29.5.4 (2013). https://doi.org/10.1109/IEDM.2012.6479130
Shiota, Y., Miwa, S., Nozaki, T., Bonell, F., Mizuochi, N., Shinjo, T., Kubota, H., Yuasa, S., Suzuki, Y.: Pulse voltage-induced dynamic magnetization switching in magnetic tunneling junctions with high resistance-area product. Appl. Phys. Lett. 101(10), 102406 (2012). https://doi.org/10.1063/1.4751035
Amiri, P.K., Wang, K.L., Galatsis, K.: Voltage-controlled magnetic anisotropy (vcma) switch and magneto-electric memory (meram). US Patent 9,129,691 (2015)
Kang, W., Ran, Y., Lv, W., Zhang, Y., Zhao, W.: High-speed, low-power, magnetic non-volatile flip-flop with voltage-controlled, magnetic anisotropy assistance. IEEE Magn. Lett. 7, 1–5 (2016). https://doi.org/10.1109/LMAG.2016.2604205
Wang, W.G., Chien, C.L.: Voltage-induced switching in magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Phys. D Appl. Phys. 46(7), 074004 (2013). https://doi.org/10.1088/0022-3727/46/7/074004
Amiri, M., Prenosil, V., Cvachovec, F.: Optimum filter-based discrimination of neutrons and gamma rays, pp. 1–7 (2015). https://doi.org/10.1109/ANIMMA.2015.7465552
Shreya, S., Jain, A., Kaushik, B.K.: Computing-in-memory using voltage-controlled spin-orbit torque based MRAM array. Microelectron. J. 104943 (2020). https://doi.org/10.1016/j.mejo.2020.104943
Weiss, P.: L’hypothèse du champ moléculaire et la propriété ferromagnétique
Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer Science & Business Media, Cham (2008)
Thomas, L., Hayashi, M., Jiang, X., Moriya, R., Rettner, C., Parkin, S.: Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315(5818), 1553–1556 (2007). https://doi.org/10.1126/science.1137662
Thomas, L., Hayashi, M., Jiang, X., Moriya, R., Rettner, C., Parkin, S.S.P.: Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443(7108), 197–200 (2006). https://doi.org/10.1038/nature05093
Lewis, E.R., Petit, D., O’Brien, L., Fernandez-Pacheco, A., Sampaio, J., Jausovec, A.-V., Zeng, H.T., Read, D.E., Cowburn, R.P.: Fast domain wall motion in magnetic comb structures. Nat. Mater. 9(12), 980–983 (2010). https://doi.org/10.1038/nmat2857
Berger, L.: Low-field magnetoresistance and domain drag in ferromagnets. J. Appl. Phys. 49(3), 2156–2161 (1978). https://doi.org/10.1063/1.324716
Berger, L.: Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55(6), 1954–1956 (1984). https://doi.org/10.1063/1.333530
Deb, S., Chattopadhyay, A.: Spintronic device-structure for low-energy XOR logic using domain wall motion. In: IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2019, pp. 1–5 (2019). https://doi.org/10.1109/ISCAS.2019.8702160
Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309(5741), 1688–1692 (2005). https://doi.org/10.1126/science.1108813
Xu, P., Xia, K., Gu, C., Tang, L., Yang, H., Li, J.: An all-metallic logic gate based on current-driven domain wall motion. Nat. Nanotechnol. 3(2), 97–100 (2008). https://doi.org/10.1038/nnano.2008.1
Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008). https://doi.org/10.1126/science.1145799
Huang, K., Zhao, R., Lian, Y.: Racetrack memory based hybrid look-up table (LUT) for low power reconfigurable computing. J. Parallel Distrib. Comput. 117, 127–137 (2018). https://doi.org/10.1016/j.jpdc.2018.02.018
Luo, Z., Hrabec, A., Dao, T.P., Sala, G., Finizio, S., Feng, J., Mayr, S., Raabe, J., Gambardella, P., Heyderman, L.J.: Current-driven magnetic domain-wall logic. Nature 579(7798), 214–218 (2020). https://doi.org/10.1038/s41586-020-2061-y
Roohi, A., Zand, R., DeMara, R.F.: A tunable majority gate-based full adder using current-induced domain wall nanomagnets. IEEE Trans. Magn. 52(8), 1–7 (2016). https://doi.org/10.1109/TMAG.2016.2540600
Dhull, S., Nisar, A., Kaushik, B.K.: High frequency current induced domain wall motion based nano oscillator. In: Spintronics XIII, Vol. 11470, International Society for Optics and Photonics, p. 114703Y (2020) https://doi.org/10.1117/12.2568313
Parkin, S.S.: Shiftable magnetic shift register and method of using the same. US Patent 6,834,005 (2004)
Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P.: Current-controlled magnetic domain-wall nanowire shift register. Science 320(5873), 209–211 (2008). https://doi.org/10.1126/science.1154587
Parkin, S., Yang, S.-H.: Memory on the racetrack. Nat. Nanotechnol. 10(3), 195–198 (2015). https://doi.org/10.1038/nnano.2015.41
Mittal, S.: A survey of techniques for architecting processor components using domain-wall memory. J. Emerg. Technol. Comput. Syst. 13(2), 1–25 (2016). https://doi.org/10.1145/2994550
Filippou, PCh., Jeong, J., Ferrante, Y., Yang, S.-H., Topuria, T., Samant, M.G., Parkin, S.S.P.: Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating. Nat. Commun. 9(4653), 1–10 (2018). https://doi.org/10.1038/s41467-018-07091-3
Venkatesan, R., Kozhikkottu, V.J., Sharad, M., Augustine, C., Raychowdhury, A., Roy, K., Raghunathan, A.: Cache design with domain wall memory. IEEE Trans. Comput. 65(4), 1010–1024 (2015). https://doi.org/10.1109/TC.2015.2506581
Sun, Z., Bi, X., Wu, W., Yoo, S., Li, H.: Array organization and data management exploration in racetrack memory. IEEE Trans. Comput. 65(4), 1041–1054 (2014). https://doi.org/10.1109/TC.2014.2360545
Wang, G., Zhang, Y., Zhang, B., Wu, B., Nan, J., Zhang, X., Zhang, Z., Klein, J.-O., Ravelosona, D., Wang, Z., Zhang, Y., Zhao, W.: Ultra-dense ring-shaped racetrack memory cache design. IEEE Trans. Circ. Syst. I 66(1), 215–225 (2018). https://doi.org/10.1109/TCSI.2018.2866932
Wang, S., Liang, Y., Zhang, C., Xie, X., Sun, G., Liu, Y., Wang, Y., Li, X.: Performance-centric register file design for GPUs using racetrack memory. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 25–30 (2016). https://doi.org/10.1109/ASPDAC.2016.7427984
Mao, M., Wen, W., Zhang, Y., Chen, Y., Li, H.: Exploration of GPGPU register file architecture using domain-wall-shift-write based racetrack memory. IEEE (2014). https://ieeexplore.ieee.org/abstract/document/6881523
Liang, Y., Wang, S.: Performance-centric optimization for racetrack memory based register file on GPUs. J. Comput. Sci. Technol. 31(1), 36–49 (2016). https://doi.org/10.1007/s11390-016-1610-1
Sun, G., Zhang, C., Li, H., Zhang, Y., Zhang, W., Gu, Y., Sun, Y., Klein, J.-O., Ravelosona, D., Liu, Y., Zhao, W., Yang, H.: From device to system: cross-layer design exploration of racetrack memory. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1018–1023 (2015). https://ieeexplore.ieee.org/abstract/document/7092539
Yang, S.-H., Ryu, K.-S., Parkin, S.: Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10(3), 221–226 (2015). https://doi.org/10.1038/nnano.2014.324
Bang, D., Van Thach, P., Awano, H.: Current-induced domain wall motion in antiferromagnetically coupled structures: fundamentals and applications. J. Sci. Adv. Mater. Devices 3(4), 389–398 (2018). https://doi.org/10.1016/j.jsamd.2018.09.003
Al Bahri, M., Borie, B., Jin, T. L., Sbiaa, R., Kläui, M., Piramanayagam, S. N.: Staggered magnetic nanowire devices for effective domain-wall pinning in racetrack memory. Phys. Rev. Appl. 11(2), 024023 (2019). https://doi.org/10.1103/PhysRevApplied.11.024023
Chen, T.-C., Parkin, S.S.: Method of fabricating data tracks for use in a magnetic shift register memory device. US Patent 6,955,926 (2005)
Shibata, J., Tatara, G., Kohno, H.: A brief review of field- and current-driven domain-wall motion. J. Phys. D Appl. Phys. 44(38), 384004 (2011). https://doi.org/10.1088/0022-3727/44/38/384004
Zhou, H., Shi, S., Nian, D., Cui, S., Luo, J., Qiu, Y., Yang, H., Zhu, M., Yu, G.: Voltage control of magnetic domain wall injection into strain-mediated multiferroic heterostructures. Nanoscale 12(27), 14479–14486 (2020). https://doi.org/10.1039/D0NR02595J
Miron, I.M., Moore, T., Szambolics, H., Buda-Prejbeanu, L.D., Auffret, S., Rodmacq, B., Pizzini, S., Vogel, J., Bonfim, M., Schuhl, A., Gaudin, G.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011). https://doi.org/10.1038/nmat3020
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E., Beach, G.S.D.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013). https://doi.org/10.1038/nmat3675
Mihai Miron, I., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P.: Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9(3), 230–234 (2010). https://doi.org/10.1038/nmat2613
Ryu, K.-S., Thomas, L., Yang, S.-H., Parkin, S.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013). https://doi.org/10.1038/nnano.2013.102
Ryu, K.-S., Yang, S.-H., Thomas, L., Parkin, S.S.P.: Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5(3910), 1–8 (2014). https://doi.org/10.1038/ncomms4910
Yun, J., Li, D., Cui, B., Guo, X., Wu, K., Zhang, X., Wang, Y., Mao, J., Zuo, Y., Xi, L.: Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii-Moriya interaction. J. Phys. D Appl. Phys. 51(15), 155001 (2018). https://doi.org/10.1088/1361-6463/aab419
Pi, U.H., Won Kim, K., Bae, J.Y., Lee, S.C., Cho, Y.J., Kim, K.S., Seo, S.: Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97(16), 162507 (2010). https://doi.org/10.1063/1.3502596
Suzuki, T., Fukami, S., Ishiwata, N., Yamanouchi, M., Ikeda, S., Kasai, N., Ohno, H.: Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98(14), 142505 (2011). https://doi.org/10.1063/1.3579155
Yang, S.-H., Parkin, S.: Novel domain wall dynamics in synthetic antiferromagnets. J. Phys. Condens. Matter 29(30), 303001 (2017). https://doi.org/10.1088/1361-648x/aa752d
Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266–270 (2010). https://doi.org/10.1038/nnano.2010.31
Behin-Aein, B., Datta, S.: All-spin logic. IEEE, pp. 21–23 (2020). https://doi.org/10.1109/DRC.2010.5551948
An, Q., Su, L., Klein, J.-O., Beux, S.L., O’Connor, I., Zhao, W.: Full-adder circuit design based on all-spin logic device, pp. 163–168 (2015). https://doi.org/10.1109/NANOARCH.2015.7180606
Mankalale, M.: Design and optimization of low-power and high-speed spintronic logic devices. Ph.D. thesis, The university of Minnesota, USA (2020)
Augustine, C., Panagopoulos, G., Behin-Aein, B., Srinivasan, S., Sarkar, A., Roy, K.: Low-power functionality enhanced computation architecture using spin-based devices. In: 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 129–136 (2011). https://doi.org/10.1109/NANOARCH.2011.5941494
Wang, S., Yang, Y., Song, W., Cui, H., Li, C., Cai, L.: All-spin logic XOR gate implementation based on input interface. IET Circuits Devices Syst. 13(5), 607–613 (2019). https://doi.org/10.1049/iet-cds.2018.5187
An, Q., Beux, S.L., O’Connor, I., Klein, J.O., Zhao, W.: Arithmetic logic unit based on all-spin logic devices. IEEE, pp. 317–320 (2017). https://doi.org/10.1109/NEWCAS.2017.8010169
Bandyopadhyay, S., Cahay, M.: Electron spin for classical information processing: a brief survey of spin-based logic devices. Nanotechnology 20(41), 412001 (2009). https://doi.org/10.1088/0957-4484/20/41/412001
Alasad, Q., Lin, J., Yuan, J.-S., Awad, Deliang, A.: Resilient and secure hardware devices using ASL. ACM J. Emerg. Technol. Comput. Syst. 1(1), 1–26 (2020). https://doi.org/10.1145/3429982
Yang, M., Deng, Y., Wu, Z., Cai, K., Edmonds, K.W., Li, Y., Sheng, Y., Wang, S., Cui, Y., Luo, J., Ji, Y., Zheng, H.-Z., Wang, K.: Spin logic devices via electric field controlled magnetization reversal by spin–orbit torque. IEEE Electron Device Lett. 40(9), 1554–1557 (2019). https://doi.org/10.1109/LED.2019.2932479
Luo, Z., Xiong, C., Zhang, X., Guo, Z.-G., Cai, J., Zhang, X.: Extremely large magnetoresistance at low magnetic field by coupling the nonlinear transport effect and the anomalous Hall effect. Adv. Mater. 28(14), 2760–2764 (2016). https://doi.org/10.1002/adma.201504023
Nan, J., Zhang, K., Zhang, Y., Yan, S., Zhang, Z., Zheng, Z., Wang, G., Leng, Q., Zhang, Y., Zhao, W.: A diode-enhanced scheme for giant magnetoresistance amplification and reconfigurable logic. IEEE Access 8, 87584–87591 (2020). https://doi.org/10.1109/ACCESS.2020.2993460
Luo, Z., Lu, Z., Xiong, C., Zhu, T., Wu, W., Zhang, Q., Wu, H., Zhang, X., Zhang, X.: Reconfigurable magnetic logic combined with nonvolatile memory writing. Adv. Mater. 29(4), 1605027 (2017). https://doi.org/10.1002/adma.201605027
Pu, Y., Mou, H., Lu, Z., Nawaz, S., Wang, G., Zhang, Z., Yang, Y., Zhang, X., Zhang, X.: Speed enhancement of magnetic logic-memory device by insulator-to-metal transition. Appl. Phys. Lett. 117(2), 022407 (2020). https://doi.org/10.1063/5.0013301
Shoucair, F., Trajkovic, L.: Analysis and simulation of simple transistor structures exhibiting negative differential resistance, EECS Department, UC Berkeley, Berkeley CA
Zhang, K., Cao, K., Zhang, Y., Huang, Z., Cai, W., Wang, J., Nan, J., Wang, G., Zheng, Z., Chen, L., Zhang, Z., Zhang, Y., Yan, S., Zhao, W.: Rectified tunnel magnetoresistance device with high on/off ratio for in-memory computing. IEEE Electron Device Lett. 41(6), 928–931 (2020). https://doi.org/10.1109/LED.2020.2987211
Skyrme, T.H.R.: A non-linear field theory. In: Selected Papers, with Commentary, of Tony Hilton Royle Skyrme, vol. 3, World Scientific, pp. 195–206 (1994). https://doi.org/10.1142/9789812795922_0013
Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nuclear Phys. 31, 556–569 (1962). https://doi.org/10.1016/0029-5582(62)90775-7
Fert, A., Cros, V., Sampaio, J.: Skyrmions on the track. Nat. Nanotechnol. 8(3), 152–156 (2013). https://doi.org/10.1038/nnano.2013.29
Finocchio, G., Büttner, F., Tomasello, R., Carpentieri, M., Kläui, M.: Magnetic skyrmions: from fundamental to applications. J. Phys. D Appl. Phys. 49(42), 423001 (2016). https://doi.org/10.1088/0022-3727/49/42/423001
Pappas, C., Lelièvre-Berna, E., Falus, P., Bentley, P.M., Moskvin, E., Grigoriev, S., Fouquet, P., Farago, B.: Chiral paramagnetic skyrmion-like phase in MnSi. Phys. Rev. Lett. 102(19), 197202 (2009). https://doi.org/10.1103/PhysRevLett.102.197202
Hooft, G. t.: Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79(2), 276–284 (1974). https://doi.org/10.1016/0550-3213(74)90486-6
Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., Böni, P.: Skyrmion lattice in a chiral magnet. Science 323(5916), 915–919 (2009). https://doi.org/10.1126/science.1166767
Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Topological Hall effect in the $$A$$ phase of MnSi. Phys. Rev. Lett. 102(18), 186602 (2009). https://doi.org/10.1103/PhysRevLett.102.186602
Everschor, K.: Current-induced dynamics of chiral magnetic structures, Ph.D. thesis, Inaugural-Dissertation zur Erlangung des Doktorgrades, Universität zu Köln (2012)
Fert, A., Levy, P.M.: Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44(23), 1538–1541 (1980). https://doi.org/10.1103/PhysRevLett.44.1538
Fert, A.R.: Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum 59–60, 439–480 (1990). https://doi.org/10.4028/www.scientific.net/MSF.59-60.439
Jonietz, F., Mühlbauer, S., Pfleiderer, C., Neubauer, A., Münzer, W., Bauer, A., Adams, T., Georgii, R., Böni, P., Duine, R.A., Everschor, K., Garst, M., Rosch, A.: Spin transfer torques in MnSi at ultralow current densities. Science 330(6011), 1648–1651 (2010). https://doi.org/10.1126/science.1195709
Everschor-Sitte, K., Masell, J., Reeve, R.M., Kläui, M.: Perspective: magnetic skyrmions—overview of recent progress in an active research field. J. Appl. Phys. 124(24), 240901 (2018). https://doi.org/10.1063/1.5048972
Schulz, T., Ritz, R., Bauer, A., Halder, M., Wagner, M., Franz, C., Pfleiderer, C., Everschor, K., Garst, M., Rosch, A.: Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8(4), 301–304 (2012). https://doi.org/10.1038/nphys2231
Tomasello, R., Martinez, E., Zivieri, R., Torres, L., Carpentieri, M., Finocchio, G.: A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4(6784), 1–7 (2014). https://doi.org/10.1038/srep06784
Zhang, X., Zhao, G.P., Fangohr, H., Liu, J.P., Xia, W.X., Xia, J., Morvan, F.J.: Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5(7643), 1–6 (2015). https://doi.org/10.1038/srep07643
Bessarab, P.F., Müller, G.P., Lobanov, I.S., Rybakov, F.N., Kiselev, N.S., Jónsson, H., Uzdin, V.M., Blügel, S., Bergqvist, L., Delin, A.: Lifetime of racetrack skyrmions. Sci. Rep. 8(3433), 1–10 (2018). https://doi.org/10.1038/s41598-018-21623-3
Chen, X., Kang, W., Zhu, D., Zhang, X., Lei, N., Zhang, Y., Zhou, Y., Zhao, W.: Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications. Appl. Phys. Lett. 111(20), 202406 (2017). https://doi.org/10.1063/1.5005953
Hrabec, A., Sampaio, J., Belmeguenai, M., Gross, I., Weil, R., Chérif, S.M., Stashkevich, A., Jacques, V., Thiaville, A., Rohart, S.: Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8(15765), 1–6 (2017). https://doi.org/10.1038/ncomms15765
Cortés-Ortuño, D., Wang, W., Beg, M., Pepper, R.A., Bisotti, M.-A., Carey, R., Vousden, M., Kluyver, T., Hovorka, O., Fangohr, H.: Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7(4060), 1–13 (2017). https://doi.org/10.1038/s41598-017-03391-8
Woo, S., Litzius, K., Krüger, B., Im, M.-Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.-A., Fischer, P., Kläui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15(5), 501–506 (2016). https://doi.org/10.1038/nmat4593
Jiang, W., Upadhyaya, P., Zhang, W., Yu, G., Jungfleisch, M.B., Fradin, F.Y., Pearson, J.E., Tserkovnyak, Y., Wang, K.L., Heinonen, O., Te Velthuis, S.G.E., Hoffmann, A.: Blowing magnetic skyrmion bubbles. Science 349(6245), 283–286 (2015). https://doi.org/10.1126/science.aaa1442
Yu, G., Upadhyaya, P., Shao, Q., Wu, H., Yin, G., Li, X., He, C., Jiang, W., Han, X., Amiri, P.K., Wang, K.L.: Room-temperature skyrmion shift device for memory application. Nano Lett. 17(1), 261–268 (2017). https://doi.org/10.1021/acs.nanolett.6b04010
Zang, J., Mostovoy, M., Han, J.H., Nagaosa, N.: Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107(13), 136804 (2011). https://doi.org/10.1103/PhysRevLett.107.136804
Zhang, X., Zhou, Y., Ezawa, M.: Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6(24795), 1–8 (2016). https://doi.org/10.1038/srep24795
Barker, J., Tretiakov, O.A.: Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116(14), 147203 (2016). https://doi.org/10.1103/PhysRevLett.116.147203
Kim, B.S., Shapere, A.D.: Skyrmions and Hall transport. Phys. Rev. Lett. 117(11), 116805 (2016). https://doi.org/10.1103/PhysRevLett.117.116805
Everschor-Sitte, K., Sitte, M., Valet, T., Abanov, A., Sinova, J.: Skyrmion production on demand by homogeneous DC currents. New J. Phys. 19(9), 092001 (2017). https://doi.org/10.1088/1367-2630/aa8569
Zhang, X., Ezawa, M., Zhou, Y.: Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5(9400), 1–8 (2015). https://doi.org/10.1038/srep09400
Nakatani, Y., Yamada, K., Hirohata, A.: Switching of Skyrmion chirality by local heating. Sci. Rep. 9(13475), 1–7 (2019). https://doi.org/10.1038/s41598-019-49875-7
Finocchio, G., Ricci, M., Tomasello, R., Giordano, A., Lanuzza, M., Puliafito, V., Burrascano, P., Azzerboni, B., Carpentieri, M.: Skyrmion based microwave detectors and harvesting. Appl. Phys. Lett. 107(26), 262401 (2015). https://doi.org/10.1063/1.4938539
Carpentieri, M., Tomasello, R., Zivieri, R., Finocchio, G.: Topological, non-topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya Interaction. Sci. Rep. 5(16184), 1–8 (2015). https://doi.org/10.1038/srep16184
Garcia-Sanchez, F., Sampaio, J., Reyren, N., Cros, V., Kim, J.-V.: A skyrmion-based spin-torque nano-oscillator. New J. Phys. 18(7), 075011 (2016). https://doi.org/10.1088/1367-2630/18/7/075011
Medlej, I., Hamadeh, A., Hassan, F.E.H.: Skyrmion based random bit generator. Physica B 579, 411900 (2020). https://doi.org/10.1016/j.physb.2019.411900
Yao, Y., Chen, X., Kang, W., Zhang, Y., Zhao, W.: Thermal brownian motion of skyrmion for true random number generation. IEEE Trans. Electron Devices 67(6), 2553–2558 (2020). https://doi.org/10.1109/TED.2020.2989420
Song, K.M., Jeong, J.-S., Pan, B., Zhang, X., Xia, J., Cha, S., Park, T.-E., Kim, K., Finizio, S., Raabe, J., Chang, J., Zhou, Y., Zhao, W., Kang, W., Ju, H., Woo, S.: Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3(3), 148–155 (2020). https://doi.org/10.1038/s41928-020-0385-0
Li, S., Kang, W., Zhang, X., Nie, T., Zhou, Y., Wang, K.L., Zhao, W.: Magnetic skyrmions for unconventional computing. Mater. Horiz. https://doi.org/10.1039/D0MH01603A
Back, C., Cros, V., Ebert, H., Everschor-Sitte, K., Fert, A., Garst, M., Ma, T., Mankovsky, S., Monchesky, T.L., Mostovoy, M., Nagaosa, N., Parkin, S.S.P., Pfleiderer, C., Reyren, N., Rosch, A., Taguchi, Y., Tokura, Y., von Bergmann, K., Zang, J.: The 2020 skyrmionics roadmap. J. Phys. D Appl. Phys. 53(36), 363001 (2020). https://doi.org/10.1088/1361-6463/ab8418