Spin and Wind Directions I: Identifying Entanglement in Nature and Cognition

Diederik Aerts1, Jonito Aerts Arguëlles2, Lester Beltran3, Suzette Geriente4, Massimiliano Sassoli de Bianchi1, Sandro Sozzo5, Tomás Veloz6
1Center Leo Apostel for Interdisciplinary Studies, Brussels Free University, Krijgskundestraat 33, 1160 Brussels, Belgium
2KASK and Conservatory, Jozef Kluyskensstraat 2, 9000 Ghent, Belgium
3825-C Tayuman Street, Tondo, Manila, The Philippines
4Block 28 Lot 29 Phase III F1, Kaunlaran Village, Caloocan City, The Philippines
5School of Business and Research Centre IQSCS, University Road, Leicester, LE1 7RH, UK
6Instituto de Filosofía y Ciencias de la Complejidad IFICC, Los Alerces 3024, Ñuñoa, Santiago, Chile

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aerts, D. (1991). A mechanistic classical laboratory situation violating the Bell inequalities with $$2\sqrt{2}$$ 2 2 , exactly ‘in the same way’ as its violations by the EPR experiments. Helvetica Physica Acta, 64, 1–23.

Aerts, D., Aerts, S., Broekaert, J., & Gabora, L. (2000). The violation of Bell inequalities in the macroworld. Foundations of Physics, 30, 1387–1414.

Aerts, D., Arguëlles, J. A., Beltran, L., Geriente, S., Sassoli de Bianchi, M. & Sozzo, S. (2017). Spin and wind directions II: A Bell state quantum model. Foundations of Science. doi: 10.1007/s10699-017-9530-2 .

Aerts, D., & Sassoli de Bianchi, M. (2016). The extended bloch representation of quantum mechanics. Explaining superposition, interference and entanglement. Journal of Mathematical Physics, 57, 122110.

Aerts, D., & Sozzo, S. (2011). Quantum structure in cognition. Why and how concepts are entangled. In Quantum interaction 2011. Lecture notes in computer science, 7052 (pp. 116–127). Berlin: Springer.

Aerts, D., & Sozzo, S. (2014). Quantum entanglement in conceptual combinations. International Journal of Theoretical Physics, 53, 3587–3603.

Aspect, A. (1983). Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarization de photons. Orsay: Thèse d’Etat.

Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49, 1804–1807.

Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49, 91–94.

Bell, J. S. (1964). On the Einstein–Podolsky–Rosen paradox. Physics, 1, 195–200.

Christensen, B. G., McCusker, K. T., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., et al. (2013). Detection-loophole-free test of quantum nonlocality, and applications. Physical Review Letters, 111, 1304–1306.

Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880–884.

Dzhafarov, E. N., & Kujala, J. V. (2014). Selective influences, marginal selectivity, and Bell/CHSH inequalities. Topics in Cognitive Science, 6, 121–128.

Dzhafarov, E. N., Kujala, J. V., Cervantes, V. H., Zhang, R., & Jones, M. (2016). On contextuality in behavioural data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi: 10.1098/rsta.2015.0234 .

Fine, A. (1982). Joint distributions, quantum correlations, and commuting observables. Journal of Mathematical Physics, 23, 1306–1310.

Freedman, S. J., & Clauser, J. F. (1972). Experimental test of local hidden variable theories. Physical Review Letters, 28, 938–941.

Fry, E. S., & Thompson, R. C. (1976). Experimental test of local hidden-variable theories. Physical Review Letters, 37, 465–468.

Genovese, M. (2005). Research on hidden variable theories. A review of recent progresses. Physics Reports, 413, 319–396.

Giustina, M., Mech, A., Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., et al. (2013). Bell violation using entangled photons without the fair-sampling assumption. Nature, 497, 227–230.

Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., et al. (2016). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526, 682–686.

Holt, R. A. (1973). Atomic cascade experiments. Ph.D. thesis, Physics Department, Harvard University.

Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik; translated as Foundations of Probability (p. 1950). New York: Chelsea Publishing Company.

Lamehi-Rachti, M., & Mittig, W. (1976). Quantum mechanics and hidden variables: A test of Bell’s inequality by the measurement of spin correlation in low-energy proton–proton scattering. Physical Review D, 14, 2543–2555.

Sassoli de Bianchi, M. (2013a). Quantum dice. Annals of Physics, 336, 56–75.

Sassoli de Bianchi, M. (2013b). Using simple elastic bands to explain quantum mechanics: A conceptual review of two of Aerts’ machine-models. Central European Journal of Physics, 11, 147–161.

Tittel, W., Brendel, J., Zbinden, H., & Gisin, N. (1998). Violation of Bell’s inequalities by photons more than 10 km apart. Physical Review Letters, 81, 3563–3566.

Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., & Zeilinger, A. (1998). Violation of Bell’s inequality under strict Einstein locality condition. Physical Review Letters, 81, 5039–5043.