Spin-Dependent Interactions of Fe2On Clusters with H2 and O2 Molecules
Tóm tắt
The geometry and electronic structure of the Fe2O, Fe2O3, and Fe2O5 clusters and the products of their interaction with H2 and O2 in the gas phase have been calculated by the density functional theory method in the generalized gradient approximation using the triple-ζ basis set. Trends in bond energies of H2 and O2 in the products of the Fe2O2 n + 1 + O2 and Fe2O2n + 1 + H2 (n = 0–2) reactions have been found. According to computational results, the initial total spin magnetic moment in the Fe2O3 + H2 → Fe2O3H2 reaction is not conserved, and the antiferromagnetic states of the reactants are transformed into the ferrimagnetic state of the reaction product. Conversely, the addition of H2 to Fe2O5 (triplet) leads to the singlet ground state of Fe2O5H2. The calculated activation barriers for the Fe2O2n + 1 + H2 and Fe2O2n + 1 + O2 reactions are relatively low and do not exceed 33 kcal/mol for all values of 2n + 1 = 1, 3, and 5.
Tài liệu tham khảo
O. L. Gobbo, K. Sjaastad, M. W. Radomski, et al., Theranostics 5, 1249 (2015). https://doi.org/10.7150/thno.11544
P. A. Cox, Transition Metal Oxides (Oxford, Clarendon, 1992).
C. N. Rao and B. Raveau, Transition Metal Oxides (New York, Wiley, 1998).
Yu. Gong, Z. Mingfei, and L. Andrews, Chem. Rev. 109, 6765 (2009).
A. Fernando, K. L. D. M. Weerawardene, N. V. Karimova, and C. M. Aikens, Chem. Rev. 115, 6112 (2015).
N. O. Jones, B. V. Reddy, F. Rasouli, and S. N. Khanna, Phys. Rev. B: Condens. Matter Mater. Phys. 73, 119901 (2006). https://doi.org/10.1103/PhysRevB.73.119901
O. V. de Oliveira, J. M. de Pires, A. C. Neto, and J. D. Santos, Chem. Phys. Lett. 634, 25 (2015).
G. L. Gutsev, C. A. Weatherford, P. Jena, et al., Chem. Phys. Lett. 556, 211 (2013). https://doi.org/10.1016/j.cplett.2012.11.054
M. Ju, J. Lv, X.-Y. Kuang, et al., RSC Adv. 5, 6560 (2015).
S. López, A. H. Romero, J. Mejna-López, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 80, 085107 (2009). https://doi.org/10.1103/PhysRevB.80.085107
K. Palotás, A. N. Andriotis, and A. Lappas, Phys. Rev. B: Condens. Matter Mater. Phys. 81, 075403 (2010). https://doi.org/10.1103/PhysRevB.81.075403
R. Logemann, G. A. de Wijs, M. I. Katsnelson, and A. Kirilyuk, Phys. Rev. B: Condens. Matter Mater. Phys. 92, 144427 (2015). https://doi.org/10.1103/PhysRevB.92.144427
G. L. Gutsev, K. G. Belay, L. G. Gutsev, and B. R. Ramachandran, J. Comput. Chem. 37, 2527 (2016). https://doi.org/10.1002/jcc.24478
W. Xue, Z.-C. Wang, S.-G. He, and Y. Xie, J. Am. Chem. Soc. 130, 15879 (2008).
Y. Xie, F. Dong, S. Heinbuch, et al., J. Chem. Phys. 130, 114306 (2009).
M. L. Weichman, J. A. DeVine, and D. M. Neumark, J. Chem. Phys. 145, 054302 (2016). https://doi.org/10.1063/1.4960176
G. L. Gutsev, K. G. Belay, L. G. Gutsev, et al., Phys. Chem. Chem. Phys. 20, 4546 (2018). https://doi.org/10.1039/C7CP08224J
D. R. Roy, R. Roblesand, and S. N. Khanna, J. Chem. Phys. 32, 194305 (2010). https://doi.org/10.1063/1.3425879
W. Xue, S. Yin, X.-L. Ding, et al., J. Phys. Chem. A 113, 5302 (2009).
P. Li, D. E. Miser, S. Rabiei, et al., Appl. Catal. B 43, 151 (2003). https://doi.org/10.1016/S0926-337300297-7
M. H. Khedr, K. S. Abdel Halim, M. I. Nasr, et al., Mater. Sci. Eng., A 430, 40 (2006). https://doi.org/10.1016/j.msea.2006.05.119
B. V. Reddy, F. Rasouli, M. R. Hajaligol, and S. N. Khanna, Chem. Phys. Lett. 384, 242 (2004). https://doi.org/10.1016/j.cplett.2003.12.023
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision C.01. (Gaussian, Inc., Wallingford CT, 2009).
L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, et al., J. Chem. Phys. 103, 6104 (1995). https://doi.org/10.1063/1.470438
A. D. Becke, Phys. Rev. A: 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
G. L. Gutsev, L. Andrews, and C. W. Bauschlicher, Theor. Chem. Acc. 109, 298 (2003). .https://doi.org/10.1007/s00214-003-0428-4
G. L. Gutsev, B. K. Rao, and P. Jena, J. Phys. Chem. A 104, 5374 (2000).
G. L. Gutsev, B. K. Rao, and P. Jena, J. Phys. Chem. A 104, 11961 (2000). https://doi.org/10.1021/jp002252s
G. L. Gutsev, C. W. Bauschlicher, Jr., H.-J. Zhai, and L.-S. Wang, J. Chem. Phys. 119, 11135 (2003). .https://doi.org/10.1063/1.1621856
S. Li and D. A. Dixon, J. Phys. Chem. A 112, 6646 (2008).
H.-J. Zhai, S. Li, D. A. Dixon, and L.-S. Wang, J. Am. Chem. Soc. 130, 5167 (2008). https://doi.org/10.1021/ja077984d
F. Grein, Int. J. Quantum Chem. 109, 549 (2009). https://doi.org/10.1002/qua.21855
S. Li and M. Jamie, Hennigan, et al., J. Phys. Chem. A 113, 7861 (2009). https://doi.org/10.1021/jp810182a
K. Yang, J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Phys. 132, 164117 (2010). https://doi.org/10.1063/1.3382342
G. Gutsev, K. Bozhenko, L. Gutsev, et al., J. Comput. Chem. 40, 562 (2019). https://doi.org/10.1002/jcc.25739
E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1, California 92717.
G. L. Gutsev, K. V. Bozhenko, L. G. Gutsev, A. N. Utenyshev, and S. M. Aldoshin, J. Phys. Chem. A 122, 5644 (2018). https://doi.org/10.1021/acs.jpca.8b03496
M. Li, S.-R. Liu, and P. B. Armentrout, J. Chem. Phys. 131, 144310 (2009). https://doi.org/10.1063/1.3246840
Z. Wang, Y. Liang, Y. Yang, and X. Shen, Chem. Phys. Lett. 705, 59 (2018). https://doi.org//10.1016/j.cplett.2018.05.045
J. M. García, R. E. Shaffer, and S. G. Sayres, Phys. Chem. Chem. Phys. 22, 24624 (2020).
P. Elliott, N. Singh, K. Krieger, E. K. U. Gross, S. Sharma, and J. K. Dewhurst, J. Magn. Magn. Mater. 502, 166473 (2020).
Z. Zheng, Q. Zheng, and J. Zhao, Phys. Rev. B 105, 085142 (2022).