Spiking neural P systems: matrix representation and formal verification
Tóm tắt
Structural and behavioural properties of models are very important in development of complex systems and applications. In this paper, we investigate such properties for some classes of SN P systems. First, a class of SN P systems associated to a set of routing problems are investigated through their matrix representation. This allows to make certain connections amongst some of these problems. Secondly, the behavioural properties of these SN P systems are formally verified through a natural and direct mapping of these models into kP systems which are equipped with adequate formal verification methods and tools. Some examples are used to prove the effectiveness of the verification approach.
Từ khóa
Tài liệu tham khảo
Abbink, H., et al. (2004). Automated support for adaptive incident management. In: Proc. of the 1st Int. workshop on information systems for crisis response and management, ISCRAM’04. Brussels (pp. 153–170).
Adorna, H. N. (2019). Matrix representations of spiking neural P systems: Revisited. In: G. Păun (Ed.) Proceedings of the 20th Int. conference on membrane computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania, Editura BIBLIOSTAR, Râmnicu Vâlcea, 2019 (pp. 227–247).
Agrigoroaiei, O., & Ciobanu, G. (2009). Dual P systems. In: Corne, D. et al (Ed.) 9th Worskhop on membrane computing, LNCS 5391 (pp. 955–107).
Agrigoroaiei, O., & Ciobanu, G. (2010). Reversing computation in membrane systems. Journal of Logic and Algebraic Programming, 79(3–5), 278–288.
Alhazov, A., & Miorita, K. (2010). On reversibility and determinism in P systems. In: G. Păun et al. (Ed.) 10th Worskhop on membrane computing, LNCS 5957 (pp. 158–158).
Alur, R., McMillan, K., & Peled, D. (2000). Model-checking of correctness conditions for concurrent objects. Information and Computation, 160(1–2), 167–188.
Aman, B., & Ciobanu, G. (2017). Reversibility in parallel rewriting systems. Journal of Universal Computer Science, 23(7), 692–703.
Martínez-del Amor, M. Á., Orellana-Martín, D., Cabarle, F. G. C., Pérez-Jiménez, M. J., & Adorna, H. N. (2017). Sparse-matrix representation of spiking neural P systems for GPU. In: 15th Brainstorming week on membrane computing) Fénix Editora. Sevilla, Spain (pp. 161–170).
Arapinis, M., Calder, M., Denis, L., Fisher, M., Gray, P., & Konur, S., et al. (2009). Towards the verification of pervasive systems. Electronic Communications of the EASST, 22.
Bakir, M. E., Konur, S., Gheorghe, M., Krasnogor, N., & Stannett, M. (2018). Automatic selection of verification tools for efficient analysis of biochemical models. Bioinformatics, 34(18), 3187–3195. https://doi.org/10.1093/bioinformatics/bty282.
Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., & Ipate, F. (2014). High performance simulations of kernel P systems. In: 16th IEEE Int. conference on high performance computing and communications (pp. 409–412). https://doi.org/10.1109/HPCC.2014.69
Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., & Niculescu, I.-M. (2014). Extended simulation and verification platform for kernel P systems. In: Gheorghe M. et al. (Ed.) 15th Int. conference on membrane computing, LNCS 8961 (pp. 158–178).
Cabarle, F. G. C., & Adorna, H. N. (2013). On structures and behaviors of spiking neural P systems and Petri nets. In: Csuhaj-Varjú, E. et al. (Ed.) 13th Int. conference on membrane computing, LNCS 7762 (pp. 145–160).
Camci, F., Eker, O. F., Baskan, S., & Konur, S. (2016). Comparison of sensors and methodologies for effective prognostics on railway turnout systems. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(1), 24–42. https://doi.org/10.1177/0954409714525145.
Carandang, J. P., Villaflores, J. M., Cabarle, F. G. C., Adorna, H. N., & Martínez-del Amor, M. Á. (2017). CuSNP: Spiking neural P systems simulators in CUDA. Romanian Journal of Information Science and Technology, 20(1), 57–70.
Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., & Tacchella, A. (2002). NuSMV version 2: An open source tool for symbolic model checking. In: Proc. Int. conference on computer-aided verification (CAV 2002), LNCS (vol. 2404, pp. 359–364). Springer. https://doi.org/10.1007/3-540-45657-0_29
Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., & Greenough, C. (2012). Exploitation of high performance computing in the FLAME agent-based simulation framework. In: Proceedings of 14th IEEE Int. conference on high performance computing and communications (pp. 538–545). https://doi.org/10.1109/HPCC.2012.79
Dela Cruz, R. T. A, Cailipan, D. P., Cabarle, F. G. C., Hernandez, N. H., Buño, K., Adorna, H. N., & Carandang, J. P. (2018). Matrix representation and simulation algorithm for spiking neural P systems with rules on synapses. In: P. L. Fernandez, Jr., H. N. Adorna, A. A. Sioson, J. D. L. Caro (Ed.) Proc. 18th Philippine Computing Science Congress (PCSC2018) (pp. 104–112).
Dela Cruz, R. T. A, Jimenez, Z., Cabarle, F. G. C., Adorna, H. N., Buño, K., Hernandez, N. H., & Carandang, J. P. (2018). Matrix representation of spiking neural P systems with structural plasticity. In: P. L. Fernandez, Jr., H. N. Adorna, A. A. Sioson, J. D. L. Caro (Ed.) Proc. 18th Philippine Computing Science Congress (PCSC2018) (pp. 152–164).
Freund, R., & Verlan, S. (2007). A formal framework for static (tissue) P systems. In: G. Eleftherakis, et al. (Ed.) 8th Worskhop on membrane computing, LNCS 4860 (pp. 271–284).
Gheorghe, M., Ceterchi, R., Ipate, F., & Konur, S. (2017). Kernel P systems modelling, testing and verification—sorting case study. In: A. Leporati, et al. (Ed.) 17th Int. Conference on Membrane Computing, LNCS 10105 (pp. 233–250). Cham.
Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., & Lefticaru, R. (2018). Kernel P systems: From modelling to verification and testing. Theoretical Computer Science, 724, 45–60.
Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., García-Quismondo, M., & Pérez-Jiménez, M.J. (2013). Kernel P Systems—Version I. In 11th Brainstorming week on membrane computing (pp. 97–124). http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf
Gheorghe, M., Konur, S., & Ipate, F. (2017). Kernel P systems and stochastic P systems for modelling and formal verification of genetic logic gates. In: A. Adamatzky (Ed.) Advances in unconventional computing, volume 1, theory (pp. 661–675). Cham . https://doi.org/10.1007/978-3-319-33924-5_25
Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M. E., & Stannett, M. (2015). An integrated model checking toolset for kernel P systems. In: G. Rozenberg, et al. (Ed.) 16th Int. conference on membrane computing, LNCS 9504 (pp. 153–170). Springer.
Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M. E., & Stannett, M. (2015). An integrated model checking toolset for kernel P systems. In: G. Rozenberg, et al. (Ed.) 16th Int. conference on membrane computing, LNCS 9504 (pp. 153–170). Springer. https://doi.org/10.1007/978-3-319-28475-0_11
Holcombe, M. (1988). X-machines as a basis for dynamic system specification. Software Engineering Journal, 3(2), 69–76. https://doi.org/10.1049/sej.1988.0009.
Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on Software Engineering, 23(5), 275–295. https://doi.org/10.1109/32.588521.
Ibo, G.N, & Adorna, H.N. (2011). Periodicity as a dynamical aspect of generative spiking neural P systems. In: M. Gheorghe, et al. (Ed.) Pre-Proc. 12th Int. conference on membrane computing (CMC12), Fontainebleau, France, 23–26 August 2011 (pp. 225–240).
Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae 71(2–3), 279–308 .
Jimenez, Z.B., Cabarle, F.G.C., Dela Cruz, R.T.A, Buño, K., Adorna, H.N., Hernandez, N.H., & Zeng, X. (2018). Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity. In: Pre-Proc. Asian conference membrane computing (ACMC2018) (pp. 10–14).
Konur, S. (2006). A decidable temporal logic for events and states. In: Thirteenth international symposium on temporal representation and reasoning (TIME’06) (pp. 36–41). https://doi.org/10.1109/TIME.2006.1
Konur, S. (2008). An interval logic for natural language semantics. In: Proceedings of the seventh conference on advances in modal logic, Nancy, France, 9–12 September 2008 (pp. 177–191).
Konur, S. (2010). Real-time and probabilistic temporal logics: An overview. CoRR abs/1005.3200.
Konur, S. (2010). A survey on temporal logics. CoRR abs/1005.3199.
Konur, S. (2014). Towards light-weight probabilistic model checking. Journal of Applied Mathematics, 2014, 15. https://doi.org/10.1155/2014/814159.
Konur, S., & Fisher, M. (2011). Formal analysis of a VANET congestion control protocol through probabilistic verification. In: Proceedings of the 73rd IEEE vehicular technology conference, VTC Spring 2011, 15–18 May 2011, Budapest, Hungary (pp. 1–5). IEEE. https://doi.org/10.1109/VETECS.2011.5956327
Konur, S., Fisher, M., Dobson, S., & Knox, S. (2014). Formal verification of a pervasive messaging system. Formal Aspects of Computing, 26(4), 677–694. https://doi.org/10.1007/s00165-013-0277-4.
Konur, S., & Gheorghe, M. (2015). A property-driven methodology for formal analysis of synthetic biology systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12, 360–371. https://doi.org/10.1109/TCBB.2014.2362531.
Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., & Krasnogor, N. (2014). Conventional verification for unconventional computing: A genetic XOR gate example. Fundamenta Informaticae, 134(1–2), 97–110.
Konur, S., Gheorghe, M., Dragomir, C., Mierlă, L., Ipate, F., & Krasnogor, N. (2015). Qualitative and quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synthetic Biology, 4(1), 83–92.
Konur, S., Mierlă, L., Ipate, F., & Gheorghe, M. (2020). kPWorkbench: A software suit for membrane systems. SoftwareX, 11, 100407.
kPWorkbench website: https://github.com/kernel-p-systems/kpworkbench.
Lefticaru, R., Bakir, M.E., Konur, S., Stannett, M., & Ipate, F. (2018). Modelling and validating an engineering application in kernel P systems. In: M. Gheorghe (Ed.) 18th Int. conference on membrane computing, LNCS 10725 (pp. 183–195). Cham. https://doi.org/10.1007/978-3-319-73359-3_12
Lefticaru, R., Konur, S., Yildirim, Ü., Uddin, A., Campean, F., & Gheorghe, M. (2017). Towards an integrated approach to verification and model-based testing in system engineering. In: The international workshop on engineering data- & model-driven applications (EDMA-2017) (pp. 131–138). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25
Leporati, A., Zandron, C., & Mauri, G. (2006). Reversible P systems to simulate Fredkin circuits. Fundamenta Informaticae, 74, 529–548.
Pan, L., Wu, T., & Zhang, Z. (2016). A bibliography of spiking neural P systems. Bulletin of the International Membrane Computing Society (I M C S), 1(1), 63–78.
Păun, G. (1998). Computing with membranes. Tech. rep., Turku Centre for Computer Science . http://tucs.fi/publications/view/?pub_id=tPaun98a.
Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693.
Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford University Press.
Verlan, S., Bernardini, F., Gheorghe, M., & Margenstern, M. (2008). Generalized communicating P systems. Theoretical Computer Science, 404, 170–184.
Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020). A formal framework for spiking neural P systems. Journal of Membrane Computing, 2(4), 355–368. https://doi.org/10.1007/s41965-020-00050-2.
Yabandeh, M. (2011). Model checking of distributed algorithm implementations. Ph.D. thesis, IC.