Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhện trong hệ sinh thái ruộng lúa chuyển từ con mồi dưới nước sang con mồi trên cạn và sử dụng các nguồn carbon khác nhau
Tóm tắt
Nhện là những tác nhân điều khiển sinh học quan trọng đối với các loài sâu hại lúa như côn trùng nhảy và côn trùng lá. Để nghiên cứu sự thay đổi theo thời gian trong con mồi của nhện và sự biến động của con mồi do cấu trúc cảnh quan xung quanh cánh đồng lúa, các đồng vị ổn định carbon và nitơ của các loài động vật không xương sống tại cánh đồng lúa đã được phân tích trong ba lần lấy mẫu liên tiếp trong mùa vụ trồng lúa. Thành phần đồng vị ban đầu của ruồi và muỗi từ các cánh đồng lúa ngập nước cho thấy chế độ ăn từ tảo ở giai đoạn larva, trong khi các giá trị sau đó cho thấy sự chuyển đổi sang carbon từ lúa. Các giá trị δ13C ban đầu của côn trùng nhảy và côn trùng lá cao hơn ở các cánh đồng có cấu trúc cảnh quan đa dạng lúa, chỉ ra sự di cư từ các quần thể nguồn ăn cỏ C4 vào các cánh đồng lúa; sau đó, các giá trị δ13C của chúng tiến gần đến giá trị của lúa. Giá trị đồng vị của nhện xây tổ và nhện chạy trong các mẫu đầu tiên chỉ ra con mồi là ruồi và muỗi dưới nước. Sự chuyển đổi sau này sang con mồi là động vật ăn cỏ trên cạn rõ rệt hơn đối với các loài nhỏ so với các loài lớn và ở các ruộng lúa gần thực vật thường xuyên, cho thấy sự sử dụng con mồi từ cảnh quan xung quanh. Các kết quả cho thấy nhện trong cánh đồng lúa được hỗ trợ bởi ba nguồn carbon khác nhau: (1) carbon dưới nước có nguồn gốc từ tảo và (2) carbon dư từ các chu kỳ phát triển trước, cả hai đều được đưa vào thông qua việc săn mồi giữa các mùa, và (3) carbon từ mùa lúa hiện tại được đưa vào thông qua con mồi động vật ăn cỏ. Kết luận, việc thúc đẩy sự phát triển của ấu trùng muỗi và ruồi dưới nước, chẳng hạn như thông qua việc phủ đất, và tích hợp các cánh đồng lúa vào các cảnh quan lúa đa dạng có thể củng cố kiểm soát sinh học đối với các loài sâu hại trong ruộng lúa bằng cách hỗ trợ quần thể nhện cao giữa các mùa trồng trọt.
Từ khóa
#nhện #cánh đồng lúa #sinh thái học #kiểm soát sinh học #động vật không xương sốngTài liệu tham khảo
Alderweireldt M (1994) Prey selection and prey capture strategies of linyphiid spiders in high-input agricultural fields. Bull Br Arachnol Soc 9:300–308
Arida GS, Heong KL (1992) Blower-Vac: a new suction apparatus for sampling rice arthropods. Int Rice Res Newslett 17:30–31
Bambaradeniya CNB, Edirisinghe JP (2008) Composition, structure and dynamics of arthropod communities in a rice agro-ecosystem. Ceylon J Sci 37:23–48. https://doi.org/10.4038/cjsbs.v37i1.494
Barrion AT, Litsinger JA (1994) Taxonomy of rice insect pests and their arthropod predators and parasitoids, 1st edn. In: Heinrichs EA (ed) Biology and management of rice insects. Wiley Eastern Limited for International Rice Research Institute, New Delhi, pp 363–486
Barrion AT, Litsinger JA (1995) Riceland spiders of South and South-east Asia, 1st edn. CAB International, Wallingford (in Association with International Rice Research Institute, Los Baños, Philippines)
Caton BP, Mortimer M, Hill JE, Johnson DE (2010) A practical field guide to weeds of rice in Asia, 2nd edn. International Rice Research Institute, Los Baños
Cherrett JM (1964) The distribution of spiders on the Moor House National Nature Reserve, Westmorland. J Anim Ecol 33:27–48. https://doi.org/10.2307/2347
Clement SL, Grigarick AA, Way MO (1977) The colonization of California rice paddies by chironomid midges. J Appl Ecol 14:379–389. https://doi.org/10.2307/2402551
Climate-Data.org. https://en.climate-data.org/asia/philippines/laguna/los-banos-20213/. Accessed 13 Mar 2019
Cook AG, Perfect TJ (1985) The influence of immigration on population development of Nilaparvata lugens and Sogatella furcifera and its interaction with immigration by predators. Crop Prot 4:423–433. https://doi.org/10.1016/0261-2194(85)90047-X
Dale D (1994) Insect pests of the rice plant-their biology and ecology. In: Heinrichs EA (ed) Biology and management of rice insects, 1st edn. Wiley Eastern Limited for International Rice Research Institute, New Delhi, pp 363–486
Dreyer J, Hoekman D, Gratton C (2012) Lake-derived midges increase abundance of shoreline terrestrial arthropods via multiple trophic pathways. Oikos 121:252–258. https://doi.org/10.1111/j.1600-0706.2011.19588.x
Dyck VA, Misra BC, Alum S, Chen CN, Hsieh CY, Rejesus RS (1979) Ecology of the brown planthopper in the tropics. International Rice Research Institute brown planthopper: threat to rice Production in Asia, 1st edn. International Rice Research Institute, Los Baños, pp 61–98
Fabian M (1998) The effects of different methods of preservation on the δ15N concentration in Folsomia candida (Collembola). Appl Soil Ecol 9:101–104
Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P (2014) Food reconstruction using isotopictransferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9:e87436
Fernández-Valiente E, Quesada A (2004) A shallow water ecosystem: rice-fields. The relevance of cyanobacteria in the ecosystem. Limnetica 23:95–108
Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York
Food and Agriculture Organisation of the UNited Nations FOA (2004). http://www.fao.org/Newsroom/en/focus/2004/36887/index.html. Accessed 6 Feb 2018
France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312
Fried O, Kühn I, Schrader J, Nguyen VS, Bergmeier E (2018) Plant diversity and composition of rice field bunds in Southeast Asia. Paddy Water Environ 16:359–378
Fry B (2006) Stable Isotope Ecology, 3rd edn. Springer, New York
Galizzi MC, Zilli F, Marchese M (2012) Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia Sér Zool 102:117–121. https://doi.org/10.1590/S0073-47212012000200001
Gratton C, Donaldson J, Zanden MJV (2008) Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland. Ecosystems 11:764–774. https://doi.org/10.1007/s10021-008-9158-8
GRiSP -Global Rice Science Partnership (2013) Rice almanac, 4th edn. International Rice Research Institute, Los Baños
Hambäck PA, Weingartner E, Dalén L, Wirta H, Roslin T (2016) Spatial subsidies in spider diets vary with shoreline structure: complementary evidence from molecular diet analysis and stable isotopes. Ecol Evol 6:8431–8439. https://doi.org/10.1002/ece3.2536
Henriquez-Oliveira AL, Nessimian JL, Dorville LFM (2003) Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta Da Tijuca, Rio de Janeiro, Brazil. Braz J Biol 63:269–281
Henschel JR, Mahsberg D, Stumpf H (2001) Allochthonous aquatic insects increase predation and decrease herbivory in river shore food webs. Oikos 93:429–438
Heong KL, Aquino GB, Barrion AT (1991) Arthropod community structures of rice ecosystems in the Philippines. Bull Entomol Res 81:407–416. https://doi.org/10.1017/S0007485300031977
Heong KL, Aquino GB, Barrion AT (1992) Population dynamics of plant- and leaf hoppers and their natural enemies in rice ecosystems in the Philippines. Crop Prot 11:371–379
Hogsden KL, McHugh PA (2017) Preservatives and sample preparation in stable isotope analysis of New Zealand freshwater invertebrates. NZ J Mar Freshwat Res 51(3):455–464. https://doi.org/10.1080/00288330.2016.1257996
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363
Ishijima C, Taguchi A, Takagi M, Motobayashi T, Nakai M, Kunimi Y (2006) Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Appl Entomol Zool 41:195–200. https://doi.org/10.1303/aez.2006.195
Johnson RK (1987) Seasonal variation in diet of Chironomus plumosus (L.) and C. anthracinus Zett. (Diptera: Chironomidae) in mesotrophic Lake Erken. Freshw Biol 17:525–532. https://doi.org/10.1111/j.1365-2427.1987.tb01073.x
Kiritani K (1979) Pest management in rice. Annu Rev Entomol 24:279–312. https://doi.org/10.1146/annurev.en.24.010179.001431
Langellotto GA, Denno RF (2006) Refuge from cannibalism in complex-structured habitats: implications for the accumulation of invertebrate predators. Ecol Entomol 31:575–581. https://doi.org/10.1111/j.1365-2311.2006.00816.x
Lu Z, Heong KL (2009) Effects of nitrogen-enriched rice plants on ecological fitness of planthoppers. In: Heong KL, Hardy B (eds) Planthoppers: new threats to the sustainabiltity of intensive rice production systems in Asia, 1st edn. International Rice Research Institute, Los Baños, pp 247–256
Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273
McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
McNabb DM, Halaj J, Wise DH (2001) Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia (Jena) 45:289–297. https://doi.org/10.1078/0031-4056-00087
Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7
Miyashita T, Takada M, Shimazaki A (2003) Experimental evidence that aboveground predators are sustained by underground detritivores. Oikos 103:31–36
Mollah M, Hossain MA, Samad MA, Khatun MF (2011) Settling and feeding responses of brown planthopper to five rice cultivars. Int J Sustain Crop Prod 6:10–13
Nentwig W (1982) Epigeic spiders, their potential prey and competidors: relationship between size and frequency. Oecologia (Berlin) 55:130–136
Oelbermann K, Scheu S (2010) Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull Entomol Res 100:511–520. https://doi.org/10.1017/S0007485309990587
Olive CW (1982) Behavioral response of a sit-and-wait predator to spatial variation in foraging gain. Ecology 63:912–920
Olivier DR (1971) Life history of the Chironomidae. Annu Rev Entomol 16:211–230. https://doi.org/10.1146/annurev.en.16.010171.001235
Papp L, Darvas B (1997) Contributions to a manual of palaearctic Diptera, vol 2. Science Herald, Budapest
Park H-H, Lee J (2006) Arthropod trophic relationships in a temperate rice ecosystem: a stable isotope analysis with δ 13 C and δ 15 N. Environ Entomol 35:684–693
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019) nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme. Accessed 10 Mar 2019
Pinnegar J, Campbell N, Polunin NVC (2001) Unusual stable isotope fractionation patterns observed for fish host—parasite trophic relationships. J Fish Biol 59:494–503. https://doi.org/10.1006/jfbi.2001.1660
Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316
Post DM (2002) Using stable isotopes to estimatetrophic position: models, methods, and assumptions. Ecology 83:703–718
Potapov AM, Tiunov AV, Scheu S (2018) Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev. https://doi.org/10.1111/brv.12434
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Rashid MM, Jahan M, Islam KS, Latif MA (2017) Ecological fitness of brown planthopper, Nilaparvata lugens (Stål), to rice nutrient management. Ecol Process 6:15. https://doi.org/10.1186/s13717-017-0080-x
Reineking A, Langel R, Schikowski J (1993) 15N, 13C- on-line measurements with an elemental analyser (Carlo Erba NA 1500), a modified trapping box and a gas isotope mass spectrometer (Finnigan, MAT 251). Isotopenpraxis Isotopes Environ Health Stud 29:169–174. https://doi.org/10.1080/10256019308046151
Rickers S, Langel R, Scheu S (2006) Stable isotope analyses document intraguild predation in wolf spiders (Araneae: Lycosidae) and underline beneficial effects of alternative prey and microhabitat structure on intraguild prey survival. Oikos 114:471–478. https://doi.org/10.1111/j.2006.0030-1299.14421.x
Riechert SE (1999) The hows and whys of successful pest suppression by spiders: insights from case studies. J Arachnol 27:387–396. https://doi.org/10.2307/3706011
Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320. https://doi.org/10.1146/annurev.en.29.010184.001503
Roger PA (1996) Biology and management of the floodwater ecosystem in ricefields, 1st edn. International Rice Research Institute, Los Baños
Roger P, Heong K, Teng P (1991) Biodiversity and sustainability of wetland rice production: role and potential of microorganisms and invertebrates. Biodiversity of microorganisms and invertebrates: its role sustainable agriculture. CAB International, UK, pp 117–136
Rypstra AL (1983) The importance of food and space in limiting web-spider densities; a test using field enclosures. Oecologia 59:312–316
Sanzone DM, Meyer JL, Marti E, Gardiner EP, Tank JL, Grimm NB (2003) Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia 134:238–250. https://doi.org/10.1007/s00442-002-1113-3
Savary S, Horgan F, Willocquet L, Heong KL (2012) A review of principles for sustainable pest management in rice. Crop Prot 32:54–63. https://doi.org/10.1016/j.cropro.2011.10.012
Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 13:3–13
Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20
Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–296
Schoenly K, Cohen JE, Heong KL, Litsinger JA (1996) Food web dynamics of irrigated rice fields at five elevations in Luzon, Philippinines. Bull Entomol Res 86:451–466
Schoenly KG, Cohen JE, Heong KL, Litsinger JA, Barrion AT, Arida GS (2010) Fallowing did not disrupt invertebrate fauna in Philippine low-pesticide irrigated rice fields. J Appl Ecol 47:593–602. https://doi.org/10.1111/j.1365-2664.2010.01799.x
Settele J, Spangenberg JH, Heong KL, Burkhard B, Bustamante JV, Cabbigat J, Chien HV, Escalada M, Grescho V, Hai LH, Harpke A, Horgan FG, Hotes S, Jahn R, Kühn I, Marquez L, Schädler M, Tekken V, Vetterlein D, Villareal S, Westphal C, Wiemers M (2015) Agricultural landscapes and ecosystem services in South-East Asia—the LEGATO-Project. Basic Appl Ecol 16:661–664. https://doi.org/10.1016/j.baae.2015.10.003
Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988
Sigsgaard L (2007) Early season natural control of the brown planthopper, Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug. Bull Entomol Res 97:533–544. https://doi.org/10.1017/S0007485307005196
Singmann H, Bolker B, Westfall J, Aust F (2018) afex: analysis of factorial experiments. R package version 0.20-2. https://CRAN.R-project.org/package=afex
Snyder WE, Wise DH (2001) Contrasting trophic cascades generated by a community of generalist predators. Ecology 82:1571–1583
Stehr FW (1997) Immature insects, 1st edn. Kendall/Hunt Publishing Company, Dubuque
Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13
Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594
Turnbull AL (1973) Ecology of the true spiders (Araneomorphae). Annu Rev Entomol 18:305–348
Uetz GW, Halaj J, Cady A-B (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280
Vanacker D, Deroose K, Pardo S, Bonte D, Maelfait J-P (2004) Cannibalism and prey sharing among juveniles of the spider Oedothorax gibbosus (Blackwall, 1841) (Erigoninae, Linyphiidae, Araneae). Belgian J Zool 134:23–28
Vander Zanden M, Rasmussen J (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066
Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. https://doi.org/10.1007/s00442-003-1270-z
von Berg K, Thies C, Tscharntke T, Scheu S (2010) Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163:1033–1042. https://doi.org/10.1007/s00442-010-1604-6
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York
Wilby A, Lan LP, Heong KL, Huyen NPD, Minh NV, Thomas MB (2006) Arthropod diversity and community structure in relation to land use in the Mekong Delta, Vietnam. Ecosystems 9:538–549. https://doi.org/10.1007/s10021-006-0131-0
Wise DH (1993) Spiders in ecological webs, 1st edn. Cambridge University Press, New York
Wise DH, Moldenhauer DM, Halaj J (2006) Using stable ssotopes to reveal shifts in prey consumption by generalist predators. Ecol Appl 16:865–876