Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer

Springer Science and Business Media LLC - Tập 12 Số 4 - Trang 492-499 - 2016
Sameerah Shaheen1, Mehreen Ahmed1, Federica Lorenzi1, Abdolrahman S. Nateri1
1Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sahin, I. H., & Garrett, C. (2013). The heterogeneity of KRAS mutations in colorectal cancer and its biomarker implications: an ever-evolving story. Translational Gastrointestinal Cancer., 2, 164–166. doi: 10.3978/j.issn.2224-4778.2013.04.01 .

Perez, K., et al. (2013). Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology. Experimental and Molecular Pathology, 95, 74–82. doi: 10.1016/j.yexmp.2013.01.004 .

Ibrahim, E. E., et al. (2012). Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms. Stem Cells, 30, 2076–2087. doi: 10.1002/stem.1182 .

Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(755–768), 755–768. doi: 10.1038/nrc2499 .

Anderson, E. C., Hessman, C., Levin, T. G., Monroe, M. M., & Wong, M. H. (2011). The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel), 3, 319–339. doi: 10.3390/cancers3010319 .

Zahreddine, H., & Borden, K. L. (2013). Mechanisms and insights into drug resistance in cancer. Frontiers in Pharmacology, 4, 28. doi: 10.3389/fphar.2013.00028 .

Suvà, M. L., Riggi, N., & Bernstein, B. E. (2013). Epigenetic reprogramming in cancer. Science, 339, 1567–1570. doi: 10.1126/science.12301 .

Meng, H.-M., et al. (2010). Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biology & Therapy, 9, 295–302. doi: 10.4161/cbt.9.4.10666 .

Burgos-Ojeda, D., Rueda, B. R., & Buckanovich, R. J. (2012). Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Letters, 322, 1–7. doi: 10.1016/j.canlet.2012.02.002 .

Ibrahim, E. E., Babaei-Jadidi, R., & Nateri, A. S. (2013). The streptavidin/biotinylated DNA/protein bound complex protocol for determining the association of c-JUN protein with NANOG promoter. Current Protocols in Stem Cell Biology . doi: 10.1002/9780470151808.sc01b10s25 .Chapter 1:Unit 1B.10

Verga Falzacappa, M. V., Ronchini, C., Reavie, L. B., & Pelicci, P. G. (2012). Regulation of self-renewal in normal and cancer stem cells. The FEBS Journal, 279, 3559–3572. doi: 10.1111/j.1742-4658.2012.08727.x .

Werbowetski-Ogilvie, T. E., & Bhatia, M. (2008). Pluripotent human stem cell lines: what we can learn about cancer initiation. Trends in Molecular Medicine, 14, 323–332. doi: 10.1016/j.molmed.2008.06.005 .

Lin, Y., et al. (2012). Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Molecular Cell, 48, 627–640. doi: 10.1016/j.molcel.2012.08.03 .

Sukach, A., & Ivanov, E. (2007). Formation of spherical colonies as a property of stem cells. Cell and Tissue Biology, 1, 476–481. doi: 10.1134/S1990519X07060028 .

Weiswald, L.-B., Bellet, D., & Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17, 1–15. doi: 10.1016/j.neo.2014.12.004 .

Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8, 486–498. doi: 10.1016/j.stem.2011 .

Svendsen, C. N., et al. (1998). A new method for the rapid and long term growth of human neural precursor cells. Journal of Neuroscience Methods, 85, 141–152. doi: 10.1016/S0165-0270(98)00126-5 .

Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401. doi: 10.1038/nature03128 .

Farnie, G., et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: role of notch and epidermal growth factor receptor signaling pathways. Journal of the National Cancer Institute, 99, 616–627. doi: 10.1093/jnci/djk133 .

Kakarala, M., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785. doi: 10.1007/s10549-009-0612-x .

Vermeulen, L., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105, 13427–13432. doi: 10.1073/pnas.0805706105 .

Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115. doi: 10.1038/nature05384 .

Jaggupilli, A., & Elkord, E. (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clinical & Developmental Immunology, 2012. doi: 10.1155/2012/708036 .

Ju, S.-Y., Chiou, S.-H., & Su, Y. (2014). Maintenance of the stemness in CD44+ HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Research, 12, 86–100. doi: 10.1016/j.scr.2013.09.011 .

Lorenzi, F., et al. (2016). Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. Molecular Theraphy Methods and Clinical Development, 3, 16024. doi: 10.1038/mtm.2016.24 .

Chu, P., et al. (2009). Characterization of a subpopulation of colon cancer cells with stem cell-like properties. International Journal of Cancer, 124, 1312–1321. doi: 10.1002/ijc.24061 .

Du, L., et al. (2008). CD44 is of functional importance for colorectal cancer stem cells. Clinical Cancer Research, 14, 6751–6760. doi: 10.1158/1078-0432.CCR-08-1034 .

Shan, Y.-S., et al. (2014). Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncology Reports, 32, 2335–2342. doi: 10.3892/or.2014.3544 .

Dame, M. K., et al. (2014). Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived. Laboratory Investigation, 94, 222–234. doi: 10.1038/labinvest .

Li, A., et al. (2001). Expression of MUC1 and MUC2 mucins and relationship with cell proliferative activity in human colorectal neoplasia. Pathology International, 51, 853–860. doi: 10.1046/j.1440-1827.2001.01291.x .

Li, N., et al. (2015). FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget, 6, 9240–9256. doi: 10.18632/oncotarget.3284 .

Han, X.-Y., et al. (2013). Epithelial-mesenchymal transition associates with maintenance of stemness in spheroid-derived stem-like colon cancer cells. PloS One, 8. doi: 10.1371/journal.pone.0073341 .

Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B., & Majumdar, A. P. (2010). The Wnt/β-catenin pathway regulates growth and maintenance of colonospheres. Molecular Cancer, 9(1), 212. doi: 10.1186/1476-4598-9-212 .

Hwang, W. L., et al. (2011). SNAIL regulates interleukin-8 expression, stem cell–like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 141, 279–291. doi: 10.1053/j.gastro.e275 .

Todaro, M., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1, 389–402. doi: 10.1016/j.stem.2007.08.001 .

Lo, P.-K., et al. (2012). CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin–TGFβ signaling. Oncogene, 31, 2614–2626. doi: 10.1038/onc .

Johnson, S., Chen, H., & Lo, P. (2013). In vitro Tumorsphere Formation Assays. Bio-protocol, 3(3), e325 .Columbia, USA http://www.bio-protocol.org/e325

Liu, J. C., Deng, T., Lehal, R. S., Kim, J., & Zacksenhaus, E. (2007). Identification of tumorsphere-and tumor-initiating cells in HER2/neu-induced mammary tumors. Cancer Research, 67, 8671–8681. doi: 10.1158/0008-5472.CAN-07-1486 .

Chen, H. (2011). The effect of B27 supplement on promoting in vitro propagation of Her2/neu-transformed mammary tumorspheres. Journal of Biological Research, 3, 7–18 ISSN: 1944–3285.

Liu, S., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071. doi: 10.1158/0008-5472.CAN-06-0054 .

Vinci, M., et al. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10, 29. doi: 10.1186/1741-7007-10-29 .

Morone, S., et al. (2012). Overexpression of CD157 contributes to epithelial ovarian cancer progression by promoting mesenchymal differentiation. PloS One, 7(8). doi: 10.1371/journal.pone.0043649 .

Loh, Y.-H., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440. doi: 10.1038/ng1760 .

Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128. doi: 10.1038/nature07299 .

Leung, E. L.-H., et al. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PloS One, 5. doi: 10.1371/journal.pone.0014062 .

Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 106, 16281–16286. doi: 10.1073/pnas.090565310 .