Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sahin, I. H., & Garrett, C. (2013). The heterogeneity of KRAS mutations in colorectal cancer and its biomarker implications: an ever-evolving story. Translational Gastrointestinal Cancer., 2, 164–166. doi: 10.3978/j.issn.2224-4778.2013.04.01 .
Perez, K., et al. (2013). Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology. Experimental and Molecular Pathology, 95, 74–82. doi: 10.1016/j.yexmp.2013.01.004 .
Ibrahim, E. E., et al. (2012). Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1-and TCF-dependent mechanisms. Stem Cells, 30, 2076–2087. doi: 10.1002/stem.1182 .
Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(755–768), 755–768. doi: 10.1038/nrc2499 .
Anderson, E. C., Hessman, C., Levin, T. G., Monroe, M. M., & Wong, M. H. (2011). The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel), 3, 319–339. doi: 10.3390/cancers3010319 .
Zahreddine, H., & Borden, K. L. (2013). Mechanisms and insights into drug resistance in cancer. Frontiers in Pharmacology, 4, 28. doi: 10.3389/fphar.2013.00028 .
Suvà, M. L., Riggi, N., & Bernstein, B. E. (2013). Epigenetic reprogramming in cancer. Science, 339, 1567–1570. doi: 10.1126/science.12301 .
Meng, H.-M., et al. (2010). Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biology & Therapy, 9, 295–302. doi: 10.4161/cbt.9.4.10666 .
Burgos-Ojeda, D., Rueda, B. R., & Buckanovich, R. J. (2012). Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Letters, 322, 1–7. doi: 10.1016/j.canlet.2012.02.002 .
Ibrahim, E. E., Babaei-Jadidi, R., & Nateri, A. S. (2013). The streptavidin/biotinylated DNA/protein bound complex protocol for determining the association of c-JUN protein with NANOG promoter. Current Protocols in Stem Cell Biology . doi: 10.1002/9780470151808.sc01b10s25 .Chapter 1:Unit 1B.10
Verga Falzacappa, M. V., Ronchini, C., Reavie, L. B., & Pelicci, P. G. (2012). Regulation of self-renewal in normal and cancer stem cells. The FEBS Journal, 279, 3559–3572. doi: 10.1111/j.1742-4658.2012.08727.x .
Werbowetski-Ogilvie, T. E., & Bhatia, M. (2008). Pluripotent human stem cell lines: what we can learn about cancer initiation. Trends in Molecular Medicine, 14, 323–332. doi: 10.1016/j.molmed.2008.06.005 .
Lin, Y., et al. (2012). Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Molecular Cell, 48, 627–640. doi: 10.1016/j.molcel.2012.08.03 .
Sukach, A., & Ivanov, E. (2007). Formation of spherical colonies as a property of stem cells. Cell and Tissue Biology, 1, 476–481. doi: 10.1134/S1990519X07060028 .
Weiswald, L.-B., Bellet, D., & Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17, 1–15. doi: 10.1016/j.neo.2014.12.004 .
Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8, 486–498. doi: 10.1016/j.stem.2011 .
Svendsen, C. N., et al. (1998). A new method for the rapid and long term growth of human neural precursor cells. Journal of Neuroscience Methods, 85, 141–152. doi: 10.1016/S0165-0270(98)00126-5 .
Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401. doi: 10.1038/nature03128 .
Farnie, G., et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: role of notch and epidermal growth factor receptor signaling pathways. Journal of the National Cancer Institute, 99, 616–627. doi: 10.1093/jnci/djk133 .
Kakarala, M., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785. doi: 10.1007/s10549-009-0612-x .
Vermeulen, L., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 105, 13427–13432. doi: 10.1073/pnas.0805706105 .
Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115. doi: 10.1038/nature05384 .
Jaggupilli, A., & Elkord, E. (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clinical & Developmental Immunology, 2012. doi: 10.1155/2012/708036 .
Ju, S.-Y., Chiou, S.-H., & Su, Y. (2014). Maintenance of the stemness in CD44+ HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Research, 12, 86–100. doi: 10.1016/j.scr.2013.09.011 .
Lorenzi, F., et al. (2016). Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. Molecular Theraphy Methods and Clinical Development, 3, 16024. doi: 10.1038/mtm.2016.24 .
Chu, P., et al. (2009). Characterization of a subpopulation of colon cancer cells with stem cell-like properties. International Journal of Cancer, 124, 1312–1321. doi: 10.1002/ijc.24061 .
Du, L., et al. (2008). CD44 is of functional importance for colorectal cancer stem cells. Clinical Cancer Research, 14, 6751–6760. doi: 10.1158/1078-0432.CCR-08-1034 .
Shan, Y.-S., et al. (2014). Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncology Reports, 32, 2335–2342. doi: 10.3892/or.2014.3544 .
Dame, M. K., et al. (2014). Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived. Laboratory Investigation, 94, 222–234. doi: 10.1038/labinvest .
Li, A., et al. (2001). Expression of MUC1 and MUC2 mucins and relationship with cell proliferative activity in human colorectal neoplasia. Pathology International, 51, 853–860. doi: 10.1046/j.1440-1827.2001.01291.x .
Li, N., et al. (2015). FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget, 6, 9240–9256. doi: 10.18632/oncotarget.3284 .
Han, X.-Y., et al. (2013). Epithelial-mesenchymal transition associates with maintenance of stemness in spheroid-derived stem-like colon cancer cells. PloS One, 8. doi: 10.1371/journal.pone.0073341 .
Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B., & Majumdar, A. P. (2010). The Wnt/β-catenin pathway regulates growth and maintenance of colonospheres. Molecular Cancer, 9(1), 212. doi: 10.1186/1476-4598-9-212 .
Hwang, W. L., et al. (2011). SNAIL regulates interleukin-8 expression, stem cell–like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology, 141, 279–291. doi: 10.1053/j.gastro.e275 .
Todaro, M., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1, 389–402. doi: 10.1016/j.stem.2007.08.001 .
Lo, P.-K., et al. (2012). CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin–TGFβ signaling. Oncogene, 31, 2614–2626. doi: 10.1038/onc .
Johnson, S., Chen, H., & Lo, P. (2013). In vitro Tumorsphere Formation Assays. Bio-protocol, 3(3), e325 .Columbia, USA http://www.bio-protocol.org/e325
Liu, J. C., Deng, T., Lehal, R. S., Kim, J., & Zacksenhaus, E. (2007). Identification of tumorsphere-and tumor-initiating cells in HER2/neu-induced mammary tumors. Cancer Research, 67, 8671–8681. doi: 10.1158/0008-5472.CAN-07-1486 .
Chen, H. (2011). The effect of B27 supplement on promoting in vitro propagation of Her2/neu-transformed mammary tumorspheres. Journal of Biological Research, 3, 7–18 ISSN: 1944–3285.
Liu, S., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071. doi: 10.1158/0008-5472.CAN-06-0054 .
Vinci, M., et al. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10, 29. doi: 10.1186/1741-7007-10-29 .
Morone, S., et al. (2012). Overexpression of CD157 contributes to epithelial ovarian cancer progression by promoting mesenchymal differentiation. PloS One, 7(8). doi: 10.1371/journal.pone.0043649 .
Loh, Y.-H., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440. doi: 10.1038/ng1760 .
Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128. doi: 10.1038/nature07299 .
Leung, E. L.-H., et al. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PloS One, 5. doi: 10.1371/journal.pone.0014062 .