Spherical hybrid silica particles modified by methacrylate groups

Journal of Sol-Gel Science and Technology - Tập 43 - Trang 21-26 - 2007
Eduardo J. Nassar1, Evelisy C. de O. Nassor1, Lilian R. Ávila1, Paula F. S. Pereira1, Alexandre Cestari1, Luiz M. Luz1, Katia J. Ciuffi1, Paulo S. Calefi1
1University of Franca, Franca, Brazil

Tóm tắt

Organic–inorganic hybrid materials have been used as fillers to reinforce dental resin composites, which require strengthening to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Homogeneous organic–inorganic hybrid materials with high performance were prepared by mixing 3-methacryloxypropyltrimethoxysilane (MPTS) and tetraethylorthosilicate (TEOS) synthesized by the sol–gel route. The matrix was prepared by hydrolyzing and condensing the TEOS and MPTS, using basic catalysis and excess water. The resulting xerogel was treated at 50, 100, 150, and 200 °C for 4 h, and the structure was analyzed by thermogravimetry (TG/DTA), photoluminescence (PL), nuclear magnetic resonance (NMR 29Si and 13C), transmission electron microscopy (TEM), infrared spectroscopy (IR), and Raman spectroscopy. The PL spectra displayed the Eu3+ lines characteristic of 5D0 → 7FJ (J = 0, 1, 2, 3, 4) ions, and the blue emission was ascribed to the silica matrix. TG, MNR and infrared spectroscopy analyses indicated the hybrid silica was stable, with the organic part present up to 150 °C. Increasing the temperature of the heat treatment was found to increase the degree of hydrolysis. The size and morphology of the silica particles were identified by TEM.

Tài liệu tham khảo

Xiong M, Zhou S, Wu L, Wang B, Yang L (2004) Polymer 45:8127 Nassar EJ, Ciuffi KJ, Ribeiro SJL, Messaddeq Y (2003) Mater Res 6(4):557 Beari F, Brand M, Jenkner P, Lehnert R, Metternich HJ, Monkiewicz J, Siesler HW (2001) J Organo Chem 625:208 Nassar EJ, Neri CR, Calefi PS, Serra OA (1999) J Non-Cryst Solids 247:124 Halvorson RH, Erickson RL, Davidson CL (2003) Dental Mater 19:27 Julian B, Beltrán H, Cordoncillo E, Escribano P, Viana B, Sanchez C (2003) J Sol-Gel Sci Techn 26:977 Uricanu V, Donescu D, Banu AG, Serban S, Olteanu M, Dudau M (2004) Mater Chem Phys 85:120 Yoshinaga I, Yamada N, Katyama S (2003) J Sol-Gel Sci Techn 28:65 Wang E, Chow K-F, Kwan V, Chin T, Wong C, Bocarsly A (2003) Analy Chim Acta 295:45 Niida H, Takahashio M, Uchino T, Yoko T (2003) J Ceramic Soc Japan 111(3):0171 Philipse AP, Vrij A (1989) J Coll Inter Sci 128:121 Mür E, Marquardt J, Klee JE, Frey H, Mülhaupt R (2001) Macromolecues 34:5778 Rocha LA, Ciuffi KJ, Sacco HC, Nassar EJ (2004) Mater Chem Phys 85:245 Lobnik A, Majcen N, Niederreiter K, Uray G (2001) Sensors Actuat B 74:200 Stöber W, Fink A, Bon E (1968) J Coll Inter Sci 26:62 Papacidero AT, Rocha LA, Caetano BL, Molina EF, Sacco HC, Nassar EJ, Martinelli Y, Mello C, Nakagaki S, Ciuffi KJ (2006) Coll Surfaces 275:27 Wright JD, Sommerdijk NAJM (2003) Sol–gel materials chemistry and applications. Taylor & Francis Silverstein RM, Webster FX (2000) Em: “Identificação Espectroscópica de Compostos Orgânicos”, 6ª. Edição, Editora LTC Vinod MP, Bahenemann D, Rajamohanan PR, Vijayamohanan K (2003) J Phys Chem B 107:11583 Mitchell SA (1966) Chem Indus 4:924 Low MJD, Ramasubramanian N (1967) J Phys Chem 71(3):730 King L, Sullivan AC (1999) Coord Chem Rev 189:19 Hazenkamp MF, Van der Veen AMH, Feiken W, Blasse G (1992) J Chem Soc Faraday Trans 88(1):141 Rice DK, Deshaser LG (1969) Phys Rev B 186:387 Reisfeld R (1984) J Eletrochem Soc 131:1360 Carlos LD, Ferreira RAS, Bermudez VDZ, Ribeiro SJL (2001) Adv Funct Mater 11(2):111 Carlos LD, Bemudez VDZ, Ferreira RAS (1999) J Non-Cryst Solids 247:203