Spherical harmonic covariance and magnitude function encodings for beamformer design

Yuancheng Luo1
1Audio Hardware-Technology, Amazon Inc., Cambridge, USA

Tóm tắt

Microphone and speaker array designs have increasingly diverged from simple topologies due to diversity of physical host geometries and use cases. Effective beamformer design must now account for variation in the array’s acoustic radiation pattern, spatial distribution of target and noise sources, and intended beampattern directivity. Relevant tasks such as representing complex pressure fields, specifying spatial priors, and composing beampatterns can be efficiently synthesized using spherical harmonic (SH) basis functions. This paper extends the expansion of common stationary covariance functions onto the SHs and proposes models for encoding magnitude functions on a sphere. Conventional beamformer designs are reformulated in terms of magnitude density functions and beampatterns along SH bases. Applications to speaker far-field response fitting, cross-talk cancelation design, and microphone beampattern fitting are presented.

Tài liệu tham khảo

M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables. Vol. 55 (US Government printing office, 1972). J. Ahrens, M. R. P. Thomas, I. Tashev, in Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, California, USA. HRTF magnitude modeling using a non-regularized least-squares fit of spherical harmonics coefficients on incomplete data, (2012). J. Ahrens, S. Bilbao, Computation of spherical harmonic representations of source directivity based on the finite-distance signature. IEEE/ACM Trans. Audio Speech Lang. Process.29:, 83–92 (2020). G. Arfken, “Spherical Harmonics” and “Integrals of the Products of Three Spherical Harmonics.” §12.6 and 12.9 in Mathematical Methods for Physicists, 3rd ed (Academic Press, Orlando, 1985). A. Chhetri, M. Mansour, W. Kim, G. Pan, in 2019 27th European Signal Processing Conference (EUSIPCO). On acoustic modeling for broadband beamforming (IEEE, 2019), pp. 1–5. A. Chhetri, et al., in 26th European Signal Processing Conference (EUSIPCO). Multichannel audio front-end for far-field automatic speech recognition (IEEE, 2018). E. Y. Choueiri, Optimal crosstalk cancellation for binaural audio with two loudspeakers. Vol. 28 (Princeton University, 2008). COMSOL MultiphysicsⓇ v. 5.6, www.comsol.com (COMSOL AB, Stockholm. https://www.comsol.com/support/knowledgebase/1223. R. Duraiswami, et al., in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. Plane-wave decomposition analysis for spherical microphone arrays, (2005). A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957). M. J. Evans, J. A. S. Angus, A. I. Tew, Analyzing head-related transfer function measurements using surface spherical harmonics. J. Acoust. Soc. Am.104(4), 2400–2411 (1998). T. Gneiting, Strictly and non-strictly positive definite functions on spheres. Bernoulli. 19(4), 1327–1349 (2013). J. Guinness, M. Fuentes, Isotropic covariance functions on spheres: Some properties and modeling considerations. J. Multivar. Anal.143:, 143–152 (2016). P. C. Hansen, The truncated SVD as a method for regularization. BIT Numer. Math.27(4), 534–553 (1987). R. A. Horn, C. R. Johnson, Matrix Analysis (2nd ed.) (Cambridge University Press, Cambridge, 2012). C. Huang, H. Zhang, S. M. Robeson, On the validity of commonly used covariance and variogram functions on the sphere. Math. Geosci.43(6), 721–733 (2011). J. Ivanic, K. Ruedenberg, Rotation matrices for real spherical harmonics. Direct determination by recursion. J. Phys. Chem.100(15), 6342–6347 (1996). D. P. Jarrett, E. A. P. Habets, P. A. Naylor, in 2010 18th European Signal Processing Conference. 3D source localization in the spherical harmonic domain using a pseudointensity vector, (2010), pp. 442–446. D. P. Jarrett, E. A. P. Habets, P. A. Naylor, Theory and applications of spherical microphone array processing, vol. 9 (Springer, New York, 2017). P. W. Kassakian, Convex approximation and optimization with applications in magnitude filter design and radiation pattern synthesis. Diss (University of California, Berkeley, 2006). Z. Li, R. Duraiswami, Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans. Audio Speech Lang. Process.15(2), 702–714 (2007). Y. Luo, W. Kim, in 2020 28th European Signal Processing Conference (EUSIPCO). Fast Source-Room-Receiver Acoustics Modeling, (2021), pp. 51–55. J. Mercer, Xvi. functions of positive and negative type, and their connection the theory of integral equations. Philosophical transactions of the royal society of London. Ser. A Containing Pap. Math. Phys. Character. 209(441-458), 415–446 (1909). C. Müller, Spherical harmonics. Vol. 17 (Springer, 2006). M. Park, B. Rafaely, Sound-field analysis by plane-wave decomposition using spherical microphone array. J. Acoust. Soc. Am.118(5), 3094–3103 (2005). A. M. Pasquala, J. R. Arrudaa, P. Herzogb, Optimal array pattern synthesis with desired magnitude response. J. Acoust. Soc. Am.123(5), 3653–3653 (2008). B. Rafaely, Fundamentals of spherical array processing, Vol. 16 (Springer International Publishing, 2018). C. E. Rasmussen, C. K. I. Williams, Gaussian processes for machine learning (MIT Press, Cambridge, 2005). P. N. Samarasinghe, et al., Spherical harmonics based generalized image source method for simulating room acoustics. J. Acoust. Soc. Am.144(3), 1381–1391 (2018). H. Saruwatari, et al., Blind source separation combining independent component analysis and beamforming. EURASIP J. Adv. Signal Process.11(2003), 1–12 (2003). I. Schoenberg, Positive definite functions on spheres. Duke Math. J.1:, 172 (1988). M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging (Springer Series in Statistics, New York, 1999). V. Loan, F. Charles, Generalizing the singular value decomposition. SIAM J. Numer. Anal.13(1), 76–83 (1976). D. B. Ward, G. W. Elko, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), 6. Optimum loudspeaker spacing for robust crosstalk cancellation, (1998), pp. 3541–3544. Wolfram Research, Inc., Mathematica, Version 12.3.1 (Wolfram Research, Inc., Champaign, 2021). https://www.wolfram.com/mathematica. D. N. Zotkin, R. Duraiswami, N. A. Gumerov, in 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. Regularized HRTF fitting using spherical harmonics, (2009), pp. 257–260. F. Zotter, et al., A beamformer to play with wall reflections: The icosahedral loudspeaker. Comput. Music J.41(3), 50–68 (2017).