Spektrale Computertomographie im Zeitalter der photonenzählenden Röntgendetektoren

Springer Science and Business Media LLC - Tập 62 Số 6 - Trang 504-510 - 2022
Lukas T. Rotkopf1,2, Eckhard Wehrse1,2, Matthias F. Froelich3
1Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
2Fakultät für Medizin Heidelberg, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Deutschland
3Klinik für Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, der Universität Heidelberg, Mannheim, Deutschland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

Macovski A, Alvarez RE, Chan JL, Stonestrom JP, Zatz LM (1976) Energy dependent reconstruction in X‑ray computerized tomography. Comput Biol Med 6(4):325–336. https://doi.org/10.1016/0010-4825(76)90069-x

Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X‑ray computerized tomography. Phys Med Biol 21(5):733–744. https://doi.org/10.1088/0031-9155/21/5/002

Seltzer S (1995) Tables of X‑Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, NIST Standard Reference Database 126. National Institute of Standards and Technology, Gaithersburg https://doi.org/10.18434/T4D01F

Tanguay J, Kim HK, Ian AC (2010) The role of x‑ray Swank factor in energy-resolving photon-counting imaging: Swank factor in energy-resolving photon-counting imaging. Med Phys 37(12):6205–6211. https://doi.org/10.1118/1.3512794

Ergun DL et al (1990) Single-exposure dual-energy computed radiography: improved detection and processing. Radiology 174(1):243–249. https://doi.org/10.1148/radiology.174.1.2294555

Carmi R, Naveh G, Altman A (2005) Material separation with dual-layer CT. Ieee Nucl Sci Symp Conf Rec 4(2005):1876–1878. https://doi.org/10.1109/NSSMIC.2005.1596697

Wielopolski L, Gardner RP (1976) Prediction of the pulse-height spectral distortion caused by the peak pile-up effect. Nucl Instrum Methods 133(2):303–309. https://doi.org/10.1016/0029-554X(76)90623-6

Danielsson M, Cheng X, Bornefalk H (2011) Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci 58(3):614–625. https://doi.org/10.1109/TNS.2011.2122267

Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339. https://doi.org/10.1118/1.595958

Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268. https://doi.org/10.1007/s00330-005-2919-2

Johnson TRC et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517. https://doi.org/10.1007/s00330-006-0517-6

Schlomka JP et al (2008) Experimental feasibility of multi-energy photon-counting K‑edge imaging in pre-clinical computed tomography. Phys Med Biol 53(15):4031–4047. https://doi.org/10.1088/0031-9155/53/15/002

Shikhaliev PM (2008) Energy-resolved computed tomography: first experimental results. Phys Med Biol 53(20):5595–5613. https://doi.org/10.1088/0031-9155/53/20/002

Taguchi K (Hrsg) (2020) Spectral, photon counting computed tomography: technology and applications, First edition. Aufl. Boca Raton: CRC Press, London, Taylor & Francis Group

Rajendran K et al (2021) First clinical photon-counting detector CT system: technical evaluation. Radiology. https://doi.org/10.1148/radiol.212579

Bette SJ et al (2021) Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol. https://doi.org/10.1007/s00330-021-08441-4

Jungblut L et al (2022) Impact of contrast enhancement and virtual monoenergetic image energy levels on emphysema quantification: experience with photon-counting detector computed tomography. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000848

Si-Mohamed SA et al (2022) Comparison of image quality between spectral photon-counting CT and dual-layer CT for the evaluation of lung nodules: a phantom study. Eur Radiol 32(1):524–532. https://doi.org/10.1007/s00330-021-08103-5

Jungblut L et al (2022) First performance evaluation of an artificial intelligence-based computer-aided detection system for pulmonary nodule evaluation in dual-source photon-counting detector CT at different low-dose levels. Invest Radiol 57(2):108–114. https://doi.org/10.1097/RLI.0000000000000814

Boccalini S et al (2021) First in-human results of computed tomography angiography for coronary stent assessment with a spectral photon counting computed tomography. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000835

Rotzinger DC et al (2021) Performance of spectral photon-counting coronary CT angiography and comparison with energy-integrating-detector CT: objective assessment with model observer. Diagn Basel Switz 11(12):2376. https://doi.org/10.3390/diagnostics11122376

Rajagopal JR et al (2021) Evaluation of coronary plaques and stents with conventional and photon-counting CT: benefits of high-resolution photon-counting CT. Radiol Cardiothorac Imaging 3(5):e210102. https://doi.org/10.1148/ryct.2021210102

Skoog S, Henriksson L, Gustafsson H, Sandstedt M, Elvelind S, Persson A (2022) Comparison of the agatston score acquired with photon-counting detector CT and energy-integrating detector CT: ex vivo study of cadaveric hearts. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-021-02494-8

Byl A, Klein L, Sawall S, Heinze S, Schlemmer H‑P, Kachelrieß M (2021) Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT. Med Phys 48(7):3572–3582. https://doi.org/10.1002/mp.14931

Lee C‑L et al (2021) Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography. PLoS ONE 16(3):e247355. https://doi.org/10.1371/journal.pone.0247355