Sự liên kết giữa tốc độ phát âm và độ khuếch tán chất trắng tiểu não ở người lớn mắc chứng ợn ngực phát triển kéo dài

Brain Structure and Function - Tập 226 - Trang 801-816 - 2021
Sivan Jossinger1, Vered Kronfeld-Duenias1, Avital Zislis1, Ofer Amir2, Michal Ben-Shachar1,3
1The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
2Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
3Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel

Tóm tắt

Tốc độ phát âm là một đặc điểm cơ bản của sản xuất ngôn ngữ, ảnh hưởng đến khả năng hiểu và hiệu quả giao tiếp của người nói. Nhiều rối loạn lời nói, bao gồm chứng ợn ngực phát triển kéo dài, có tốc độ phát âm thay đổi. Cụ thể, người lớn mắc chứng ợn ngực (AWS) thường thể hiện tốc độ phát âm chậm hơn so với những người nói lưu loát. Bằng chứng từ các nghiên cứu hình ảnh cho thấy tiểu não có vai trò trong việc kiểm soát tốc độ sản xuất lời nói. Những người mắc chứng ợn ngực cho thấy sự bất thường về cấu trúc và chức năng trong tiểu não. Tuy nhiên, sự tham gia của các đường dẫn tiểu não trong việc kiểm soát tốc độ phát âm vẫn chưa được khám phá. Ở đây, chúng tôi đánh giá mối liên kết của các cuống tiểu não với tốc độ phát âm ở AWS và các diễn giả đối chứng. Dữ liệu MRI khuếch tán và tốc độ phát âm đã được thu thập từ 42 người tham gia (23 AWS, 19 người đối chứng). Chúng tôi đã sử dụng phương pháp theo dõi đường định hướng với phân đoạn và định lượng sợi tự động (AFQ) để xác định các cuống tiểu não trên, giữa và dưới (SCP, MCP, ICP) ở cả hai bên, và định lượng độ dị hướng phân tử (FA) và độ khuếch tán trung bình (MD) dọc theo mỗi đường dẫn. Không có sự khác biệt đáng kể nào giữa AWS và người đối chứng trong các giá trị khuếch tán của các cuống tiểu não. Tuy nhiên, AWS cho thấy một mối liên hệ tiêu cực đáng kể giữa tốc độ phát âm và FA trong ICP bên trái, một đường dẫn chính của tiểu não truyền tải tín hiệu phản hồi cảm giác từ nhân olivary vào tiểu não. Sự tham gia của ICP trong việc kiểm soát sản xuất lời nói ở AWS tương thích với quan điểm cho rằng chứng ợn ngực bắt nguồn từ việc giám sát lời nói quá mức, nơi ngay cả những sai lệch nhỏ so với kế hoạch phát âm cũng được coi là lỗi. Kết luận, những phát hiện của chúng tôi gợi ý một cơ chế thần kinh khả thi cho sự giảm tốc độ phát âm được quan sát ở AWS.

Từ khóa

#tốc độ phát âm; chứng ợn ngực; tiểu não; khuếch tán chất trắng; người lớn

Tài liệu tham khảo

Ackermann H (2008) Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci 31(6):265–272 Ackermann H, Brendel B (2016) Cerebellar contributions to speech and language. In: Neurobiology of language. Academic Press, pp 73–84 Adams M, Lewi J, Besozzi T (1973) The effect of reduced reading rate on stuttering frequency. J Speech Lang Hear Res 16(4):671–675 Alm PA (2004) Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord 37(4):325–369 Ambrose NG, Yairi E (1999) Normative disfluency data for early childhood stuttering. J Speech Lang Hear Res JSLHR 42(4):895–909 Amir O (2016) Speaking rate among adult hebrew speakers: a preliminary observation. Ann Behav Sci 2(1):1–9 Amir O, Grinfeld D (2011) Articulation rate in childhood and adolescence: hebrew speakers. Lang Speech 54(2):225–240 Amir O, Levine-Yundof R (2013) Listeners’ attitude toward people with dysphonia. J Voice 27(4):524.e1-524.e10 Andersson BYG, Armstrong DM (1987) Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 385(1):107–134 Arnstein D, Lakey B, Compton RJ, Kleinow J (2011) Preverbal error-monitoring in stutterers and fluent speakers. Brain Lang 116(3):105–115 Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61 Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632 Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 15(7–8):435–455 Blecher T, Tal I, Ben-Shachar M (2016) White matter microstructural properties correlate with sensorimotor synchronization abilities. NeuroImage 138:1–12 Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. NeuroImage 32(2):821–841 Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW (2019) Age-dependent white matter characteristics of the cerebellar peduncles from infancy through adolescence. The Cerebellum 18(3):372–387 Cai S, Beal DS, Ghosh SS, Tiede MK, Guenther FH, Perkell JS (2012) Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation. PLoS ONE 7(7):1–13 Cai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2014) Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies. Front Hum Neurosci 8:1–18 Chang S-E, Zhu DC (2013) Neural network connectivity differences in children who stutter. Brain 136(12):3709–3726 Chang SE, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL (2008) Brain anatomy differences in childhood stuttering. Neuroimage 39(3):1333–1344 Chang S-E, Horwitz B, Ostuni J, Reynolds R, Ludlow CL (2011) Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex 21(11):2507–2518 Chang S-E, Zhu DC, Choo AL, Angstadt M (2015) White matter neuroanatomical differences in young children who stutter. Brain 138(3):694–711 Cieslak M, Ingham RJ, Ingham JC, Grafton ST (2015) Anomalous white matter morphology in adults who stutter. J Speech Lang Hear Res 58(2):268–277 Civier O, Tasko SM, Guenther FH (2010) Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. J Fluen Disord 35(3):246–279 Connally EL, Ward D, Howell P, Watkins KE (2014) Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 131:25–35 Daliri A, Wieland EA, Cai S, Guenther FH, Chang S-E (2018) Auditory-motor adaptation is reduced in adults who stutter but not in children who stutter. Dev Sci 21(2):e12521 de Andrade CRF, Cervone LM, Sassi FC (2003) Relationship between the stuttering severity index and speech rate. Sao Paulo Medical Journal = Revista Paulista de Medicina 121(2):81–84 De Nil LF, Kroll RM, Lafaille SJ, Houle S (2003) A positron emission tomography study of short-and long-term treatment effects on functional brain activation in adults who stutter. J Fluen Disord 28(4):357–380 De Santis S, Drakesmith M, Bells S, Assaf Y, Jones DK (2014) Why diffusion tensor MRI does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain. NeuroImage 89:35–44 Dietz V, Zijlstra W, Duysens J (1994) Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res 101(3):513–520 Fox P, Ingham R, Ingham J, Zamarripa F, Xiong J, Lancaster J (2000) Brain correlates of stuttering and syllable production. A PET performance-correlation analysis. Brain 123(10):1985–2004 Friston KJ, Ashburner J (2004) Generative and recognition models for neuroanatomy. NeuroImage 23(1):21–24 Guenther FH (2006) Cortical interactions underlying the production of speech sounds. J Commun Disord 39(5):350–365 Halag-Milo T, Stoppelman N, Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M (2016) Beyond production: brain responses during speech perception in adults who stutter. NeuroImage Clin 11:328–338 Hall KD, Amir O, Yairi E (1999) A longitudinal investigation of speaking rate in preschool children who stutter. J Speech Lang Hear Res 42(6):1367–1377 Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? effect of cerebellar stroke. Brain 127(3):561–574 Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):29–35 Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2018) Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat Neurosci 21(5):736–743 Hewitt AL, Popa LS, Ebner TJ (2015) Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation. J Neurosci 35(3):1106–1124 Hickok G (2012) Computatinal neuroanatomy of speech production. Nat Rev Neurosci 13(2):135–145 Hore J, Flament D (1986) Evidence that a disordered servo-like mechanism contributes to tremor in movements during cerebellar dysfunction. J Neurophysiol 56:123–136 Howell P (2004) Assessment of some contemporary theories of stuttering that apply to spontaneous speech. Contemp Issues Commun Sci Disord CICSD 31:122–139 Iimura D, Asakura N, Sasaoka T, Inui T (2019) Abnormal sensorimotor integration in adults who stutter: A behavioral study by adaptation of delayed auditory feedback. Front Psychol 10:1–11 Ingham RJ, Grafton ST, Bothe AK, Ingham JC (2012) Brain activity in adults who stutter: similarities across speaking tasks and correlations with stuttering frequency and speaking rate. Brain Lang 122(1):11–24 Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41:555–573 Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254 Jossinger S, Mawase F, Ben-Shachar M, Shmuelof L (2020) Locomotor adaptation is associated with microstructural properties of the inferior cerebellar peduncle. The Cerebellum 19(3):370–382 Kavé G (2005) Standardization and norms for a Hebrew naming test. Brain Lang 92(2):204–211 Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud A (2009) How the brain repairs stuttering. Brain 132(10):2747–2760 Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G, Duffau H (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263(1):157–167 Kent RD, Rosenbek JC (1983) Acoustic patterns of apraxia of speech. J Speech Lang Hear Res 26(2):231–249 Kent RD, Kent JF, Rosenbek JC (1987) Maximum performance tests of speech production. J Speech Hear Disord 52(4):367–387 Kim KS, Daliri A, Flanagan JR, Max L (2020) Dissociated development of speech and limb sensorimotor learning in stuttering: speech auditory-motor learning is impaired in both children and adults who stutter. Neuroscience 451:1–21 Klein JC, Lorenz B, Kang J-S, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R (2011) Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 32(6):896–904 Kloth SAM, Janssen P, Kraaimaat FW, Brutten GJ (1995) Speech-motor and linguistic skills of young stutterers prior to onset. J Fluen Disord 20(2):157–170 Korzeczek A, Cholin J, Jorschick A, Hewitt M, Sommer M (2020) Finger sequence learning in adults who stutter. Front Psychol 11(July):1–12 Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2016a) The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct 221(1):365–381 Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2016b) Dorsal and ventral language pathways in persistent developmental stuttering. Cortex 81:79–92 Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M (2018) White matter pathways in persistent developmental stuttering: Lessons from tractography. J Fluen Disord 55:68–83 Lebel C, Benner T, Beaulieu C (2012) Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med 68(2):474–483 Leemans A, Jones DK (2009) The B -matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349 Loucks TMJ, De Nil LF (2006) Anomalous sensorimotor integration in adults who stutter: a tendon vibration study. Neurosci Lett 402(1–2):195–200 Lu C, Ning N, Peng D, Ding G, Li K, Yang Y, Lin C (2009) The role of large-scale neural interactions for developmental stuttering. Neuroscience 161(4):1008–1026 Lu C, Chen C, Peng D, You W, Zhang X, Ding G, Deng X, Yan Q, Howell P (2012) Neural anomaly and reorganization in speakers who stutter: a short-term intervention study. Neurology 79(7):625–632 Mädler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Magn Reson Imaging 26(7):874–888 Max L, Guenther F, Gracco V (2004) Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: a theoretical model of stuttering. Contemp Issues Commun Sci Disord 31:105–122 Molinari M, Leggio MG, Thaut MH (2007) The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6(1):18–23 Morey RD, Rouder JN (2018) BayesFactor: computation of Bayes factors for common designs. R package version 0.9.12-4.2. https://CRAN.R-project.org/package=BayesFactor Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269 Neef NE, Anwander A, Bütfering C, Schmidt-Samoa C, Friederici AD, Paulus W, Sommer M (2018) Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain 141(1):191–204 Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25 Perrini P, Tiezzi G, Castagna M, Vannozzi R (2013) Three-dimensional microsurgical anatomy of cerebellar peduncles. Neurosurg Rev 36(2):215–225 Postma A, Kolk H (1993) The covert repair hypothesis: prearticulatory repair processes in normal and stuttered disfluencies. J Speech Hear Res 36(3):472–487 R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Raymond J, Lisberger S, Mauk M (1996) The cerebellum: a neuronal learning machine? Science 272(5265):1126–1131 Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64(4):700–706 Riecker A, Kassubek J, Gröschel K, Grodd W, Ackermann H (2006) The cerebral control of speech tempo: opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. NeuroImage 29(1):46–53 Riley G (1994) Stuttering severity instrument for children and adults, 3rd edn. Pro-Ed, Austin, Texas Rochman D, Amir O (2013) Examining in-session expressions of emotions with speech/vocal acoustic measures: an introductory guide. Psychother Res 23(4):381–393 Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114 Sares AG, Deroche MLD, Shiller DM, Gracco VL (2019) Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Ann NY Acad Sci 1449(1):56–69 Schalling E, Hartelius L (2013) Speech in spinocerebellar ataxia. Brain Lang 127(3):317–322 Schilling K, Gao Y, Janve V, Stepniewska I, Landman BA, Anderson AW (2017) Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed 30(12):e3787 Shadmehr R (2017) Learning to predict and control the physics of our movements. J Neurosci 37(7):1663–1671 Sitek KR, Cai S, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2016) Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: whole-brain functional and structural connectivity associations with persistent developmental stuttering. Front Hum Neurosci 10(MAY2016):1–11 Smits-Bandstra S, De Nil LF (2007) Sequence skill learning in persons who stutter: implications for cortico-striato-thalamo-cortical dysfunction. J Fluen Disord 32(4):251–278 Stikov N, Campbell JSW, Stroh T, Lavelée M, Frey S, Novek J, Nuara S, Ho MK, Bedell BJ, Dougherty RF, Leppert IR, Boudreau M, Narayanan S, Duval T, Cohen-Adad J, Picard PA, Gasecka A, Côté D, Pike GB (2015) In vivo histology of the myelin g-ratio with magnetic resonance imaging. NeuroImage 118:397–405 Streng ML, Popa LS, Ebner TJ (2018) Complex spike wars: a new hope. The Cerebellum 17(6):735–746 Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage 42(2):617–625 Tourville JA, Guenther FH (2013) DIVA model for speech acquisition. Lang Cogn Process 26(7):1–27 Travis KE, Leitner Y, Feldman HM, Ben-Shachar M (2015) Cerebellar white matter pathways are associated with reading skills in children and adolescents. Hum Brain Mapp 36(4):1536–1553 Travis KE, Castro MRH, Berman S, Dodson CK, Mezer AA, Ben-Shachar M, Feldman HM (2019) More than myelin: probing white matter differences in prematurity with quantitative T1 and diffusion MRI. NeuroImage Clin 22:101756 Tremblay P, Deschamps I, Gracco VL (2016) Neurobiology of speech production: a motor control perspective. In: Neurobiology of language. Academic Press, pp 741–750 Uddin MN, Figley TD, Solar KG, Shatil AS, Figley CR (2019) Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. Sci Rep 9(1):2500 Vasic N, Wijnen F (2005) Stuttering as a monitoring deficit. In: Hartsuiker RJ, Bastiaanse R, Postma A, Wijnen F (eds) Phonological encoding and monitoring in normal and pathological speech. Psychology Press, pp 226–247 Watkins KE, Smith SM, Davis S, Howell P (2007) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131(1):50–59 Watkins K, Chesters J, Connally E (2015) The neurobiology of developmental stuttering. In: Hickok G SS (ed) Neurobiology of language. Elsevier, Amsterdam, pp 995–1004 Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347 Xuan Y, Meng C, Yang Y, Zhu C, Wang L, Yan Q, Lin C, Yu C (2012) Resting-state brain activity in adult males who stutter. PLoS ONE 7(1):e30570 Yablonski M, Rastle K, Taylor JSH, Ben-Shachar M (2018) Structural properties of the ventral reading pathways are associated with morphological processing in adult English readers. Cortex 116:1–18 Yang Y, Jia F, Siok WT, Tan LH (2016) Altered functional connectivity in persistent developmental stuttering. Sci Rep 6(1):19128 Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7(11):e49790 Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B (2014) Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 88:79–90 Zimmermann G (1980a) Articulatory behaviors associated with stuttering. J Speech Lang Hear Res 23(1):108–121 Zimmermann G (1980b) Articulatory dynamics of fluent utterances of stutterers and nonstutterers. J Speech Lang Hear Res 23(1):95–107 Zimmermann G (1980c) Stuttering. J Speech Lang Hear Res 23(1):122–136