Speculative Futures Trading under Mean Reversion
Tóm tắt
This paper studies the problem of trading futures with transaction costs when the underlying spot price is mean-reverting. Specifically, we model the spot dynamics by the Ornstein–Uhlenbeck, Cox–Ingersoll–Ross, or exponential Ornstein–Uhlenbeck model. The futures term structure is derived and its connection to futures price dynamics is examined. For each futures contract, we describe the evolution of the roll yield, and compute explicitly the expected roll yield. For the futures trading problem, we incorporate the investor’s timing option to enter or exit the market, as well as a chooser option to long or short a futures upon entry. This leads us to formulate and solve the corresponding optimal double stopping problems to determine the optimal trading strategies. Numerical results are presented to illustrate the optimal entry and exit boundaries under different models. We find that the option to choose between a long or short position induces the investor to delay market entry, as compared to the case where the investor pre-commits to go either long or short.
Tài liệu tham khảo
Acworth, W. (2015). 2014 FIA annual global futures and options volume: Gains in North America and Europe offset declines in Asia-Pacific. [Online; posted 09-March-2015].
Bali, T. G., & Demirtas, K. O. (2008). Testing mean reversion in financial market volatility: Evidence from S&P 500 index futures. Journal of Futures Markets, 28(1), 1–33.
Bessembinder, H., Coughenour, J. F., Seguin, P. J., & Smoller, M. M. (1995). Mean reversion in equilibrium asset prices: Evidence from the futures term structure. The Journal of Finance, 50(1), 361–375.
Brennan, M. J., & Schwartz, E. S. (1990). Arbitrage in stock index futures. Journal of Business, 63(1), S7–S31.
Cartea, A., Jaimungal, S., & Penalva, J. (2015). Algorithmic and high-frequency trading. Cambridge: Cambridge University Press.
Casassus, J., & Collin-Dufresne, P. (2005). Stochastic convenience yield implied from commodity futures and interest rates. The Journal of Finance, 60(5), 2283–2331.
Cox, J. C., Ingersoll, J., & Ross, S. A. (1981). The relation between forward prices and futures prices. Journal of Financial Economics, 9(4), 321–346.
Dai, M., Zhong, Y., & Kwok, Y. K. (2011). Optimal arbitrage strategies on stock index futures under position limits. Journal of Futures Markets, 31(4), 394–406.
Detemple, J., & Osakwe, C. (2000). The valuation of volatility options. European Finance Review, 4(1), 21–50.
Elton, E. J., Gruber, M. J., Brown, S. J., & Goetzmann, W. N. (2009). Modern portfolio theory and investment analysis (8th ed.). New York: Wiley.
Geman, H. (2007). Mean reversion versus random walk in oil and natural gas prices. In M. C. Fu, R. A. Jarrow, J.-Y. J. Yen, & R. J. Elliot (Eds.), Advances in mathematical finance, applied and numerical harmonic analysis (pp. 219–228). Boston: Birkhuser Boston.
Gorton, G. B., Hayashi, F., & Rouwenhorst, K. G. (2013). The fundamentals of commodity futures returns. Review of Finance, 17(1), 35–105.
Grübichler, A., & Longstaff, F. (1996). Valuing futures and options on volatility. Journal of Banking and Finance, 20(6), 985–1001.
Irwin, S. H., Zulauf, C. R., & Jackson, T. E. (1996). Monte Carlo analysis of mean reversion in commodity futures prices. American Journal of Agricultural Economics, 78(2), 387–399.
Leung, T., & Li, X. (2015). Optimal mean reversion trading with transaction costs and stop-loss exit. International Journal of Theoretical & Applied Finance, 18(3), 15500.
Leung, T., Li, X., & Wang, Z. (2014). Optimal starting–stopping and switching of a CIR process with fixed costs. Risk and Decision Analysis, 5(2), 149–161.
Leung, T., Li, X., & Wang, Z. (2015). Optimal multiple trading times under the exponential OU model with transaction costs. Stochastic Models, 31(4), 554–587.
Leung, T., & Liu, P. (2012). Risk premia and optimal liquidation of credit derivatives. International Journal of Theoretical & Applied Finance, 15(8), 1250059.
Leung, T., & Shirai, Y. (2015). Optimal derivative liquidation timing under path-dependent risk penalties. Journal of Financial Engineering, 2(1), 1550004.
Lu, Z., & Zhu, Y. (2009). Volatility components: The term structure dynamics of VIX futures. Journal of Futures Markets, 30(3), 230–256.
Mencía, J., & Sentana, E. (2013). Valuation of VIX derivatives. Journal of Financial Economics, 108(2), 367–391.
Monoyios, M., & Sarno, L. (2002). Mean reversion in stock index futures markets: A nonlinear analysis. The Journal of Futures Markets, 22(4), 285–314.
Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum. Journal of Financial Economics, 104(2), 228–250.
Ribeiro, D. R. & Hodges, S. D. (2004). A two-factor model for commodity prices and futures valuation. EFMA 2004 Basel Meetings Paper.
Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of Finance, 52(3), 923–973.
Wang, Z., & Daigler, R. T. (2011). The performance of VIX option pricing models: Empirical evidence beyond simulation. Journal of Futures Markets, 31(3), 251–281.
Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives: A student introduction (1st ed.). Cambridge: Cambridge University Press.
Zhang, J. E., & Zhu, Y. (2006). VIX futures. Journal of Futures Markets, 26(6), 521–531.
Zhu, S.-P., & Lian, G.-H. (2012). An analytical formula for VIX futures and its applications. Journal of Futures Markets, 32(2), 166–190.