Spectroscopic and magnetic properties of Co0.15Al0.25-xNi0.6+xFe2O4nanocomposites aided by silica for prohibiting pathogenic bacteria during sewage handling
Tài liệu tham khảo
Abbas, 2014, Size-controlled high magnetization CoFe2O4 nanospheres and nanocubes using rapid one-pot sonochemical technique, Ceram. Int., 40, 3269, 10.1016/j.ceramint.2013.09.109
Hammad, 2020, Identification of dielectric and magnetic properties of core shell ZnTiO3/CoFe2O4 nanocomposites, Appl. Phys. A, 126, 504, 10.1007/s00339-020-03679-z
Abou Hammad, Ali B, El Nahrawy, A.M., Hemdan, B.A., Abia, A.L.K., 2020b. Correction to: Nanoceramics and novel functionalized silicate-based magnetic nanocomposites as substitutional disinfectants for water and wastewater purification. Environ. Sci. Pollut. Res. 27, 29698–29698. https://doi.org/10.1007/s11356-020-09666-4.
Hammad, 2020, Detection of 3,4-diaminotoluene based on Sr 0.3 Pb 0.7 TiO 3 /CoFe 2 O 4 core/shell nanocomposite via an electrochemical approach, New J. Chem., 7941–7953
Ahn, 2007, High performance, waveguide integrated Ge photodetectors, Opt. Express, 15, 3916, 10.1364/OE.15.003916
Akhtar, 2017, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications, J. Magn. Magn. Mater., 421, 260, 10.1016/j.jmmm.2016.08.035
Ali, 2018, Thermosensitive chitosan/phosphate hydrogel-composites fortified with Ag versus Ag@Pd for biomedical applications, Life Sci., 194, 185, 10.1016/j.lfs.2017.12.021
Anthony, 2016, MEMS based fabrication of high-frequency integrated inductors on Ni–Cu–Zn ferrite substrates, J. Magn. Magn. Mater., 406, 89, 10.1016/j.jmmm.2015.12.099
Astm, 1985
Balaji, 2017, Effect of Mn 2+ substitution on the structural, morphological and magnetic properties of copper ferrite nanoparticles, Mater. Technol., 32, 378, 10.1080/10667857.2016.1254399
Baykal, 2008, CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization, J. Alloys Compd., 464, 514, 10.1016/j.jallcom.2007.10.041
Chakradhary, 2019, Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications, J. Magn. Magn. Mater., 469, 674, 10.1016/j.jmmm.2018.09.021
Cullity, B.D., Graham, C.D., 2008. Introduction to Magnetic Materials, Introduction to Magnetic Materials. John Wiley & Sons, Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780470386323.
Deraz, 2012, Processing and evaluation of alumina doped nickel ferrite nano-particles, Int. J. Electrochem. Sci., 7, 4585, 10.1016/S1452-3981(23)19563-0
Dippong, 2020, Impact of Cu2+ substitution by Co2+ on the structural and magnetic properties of CuFe2O4 synthesized by sol-gel route, Mater. Charact., 163, 10.1016/j.matchar.2020.110248
Dippong, T., Levei, E.A., Cadar, O., 2021. Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) Nanoparticles. Nanomater. 2021, Vol. 11, Page 1560 11, 1560. https://doi.org/10.3390/NANO11061560.
Dippong, 2019, The impact of polyol structure on the formation of Zn0.6Co0.4Fe2O4 spinel-based pigments, J. Sol-Gel Sci. Technol., 92, 736, 10.1007/s10971-019-05140-x
Dippong, 2020, Investigation of thermal, structural, morphological and photocatalytic properties of CuxCo1-xFe2O4 (0 ≤ x ≤ 1) nanoparticles embedded in SiO2 matrix, Mater. Charact., 163, 10.1016/j.matchar.2020.110268
Dippong, 2016, Magnetic properties evolution of the CoxFe3-xO4/SiO2 system due to advanced thermal treatment at 700 °C and 1000 °C, J. Magn. Magn. Mater., 410, 47, 10.1016/j.jmmm.2016.03.020
Duffy, 2001, Ultraviolet transparency of glass: A chemical approach in terms of band theory, polarisability and electronegativity [WWW Document], Phys. Chem. Glas.
Durga Prasad, 2019, Enhanced magnetic properties of highly crystalline cobalt ferrite fibers and their application as gas sensors, J. Magn. Magn. Mater., 484, 225, 10.1016/j.jmmm.2019.04.026
El Nahrawy, 2020, Influence of NiO on structural, optical, and magnetic properties of Al2O3–P2O5–Na2O magnetic porous nanocomposites nucleated by SiO2, Solid State Sci., 108, 10.1016/j.solidstatesciences.2020.106454
El Nahrawy, 2021, Synthesis, structural analysis, electrochemical and antimicrobial activities of copper magnesium zirconosilicate (Cu20Mg10Si40Zr(30–x)O:(x = 0,5,7,10) Ni2+) nanocrystals, Microchem. J., 163, 105881, 10.1016/j.microc.2020.105881
Nahrawy, 2019, Decontamination of ubiquitous harmful microbial lineages in water using an innovative Zn2Ti0.8Fe0.2O4 nanostructure: dielectric and terahertz properties, Heliyon.
Nahrawy, 2019, Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites, Appl. Phys. A, 125, 46, 10.1007/s00339-018-2351-5
El Nahrawy, 2020, Optical, Functional Impact and Antimicrobial of Chitosan/Phosphosilicate/Al2O3 Nanosheets, J. Inorg. Organomet. Polym. Mater., 30, 3084, 10.1007/s10904-020-01469-x
Nahrawy, 2019, Effect of Cu incorporation on morphology and optical band gap properties of nano-porous lithium magneso-silicate (LMS) thin films, Mater. Res. Express, 6
Nahrawy, 2019, Copper Lithium Silicate/ZrO2 Nanoparticles-Coated Kevlar for Improving UV-Vis Absorbance/ Protection Properties, Silicon, 1–8
Nahrawy, 2019, Crystallographic and Magnetic Properties of Al3+co-doped NiZnFe2O4 Nano- particles Prepared by Sol-gel Process, Egypt. J. Chem., 62, 525
El Nahrawy, 2018, Sodium-cobalt ferrite nanostructure study: Sol-gel synthesis, characterization, and magnetic properties, J. Ovonic Res., 14, 193
ElNahrawy, 2020, Impact of Mn-substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications, J. Mater. Sci. Mater. Electron., 31, 6224, 10.1007/s10854-020-03176-2
Filipič, 2012, Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida, Bioresour. Technol., 120, 225, 10.1016/j.biortech.2012.06.023
Fouad, 2017, Role of bacterial additives for biological treatment of domestic wastewater in septic tank, J. Eng. Appl. Sci.
Fouad, 2020
Gaballah, 2019, Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications, Int. J. Biol. Macromol., 121, 707, 10.1016/j.ijbiomac.2018.10.085
Gheidari, 2020, Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light, Heliyon, 6, e05058, 10.1016/j.heliyon.2020.e05058
Gounani, 2019, Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility, Colloids Surfaces B Biointerfaces, 175, 498, 10.1016/j.colsurfb.2018.12.035
Guerra, 2018, Nanotechnology for environmental remediation: Materials and applications, Molecules, 23, 1760, 10.3390/molecules23071760
Gupta, 2018, Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review, Mater. Res. Innov., 22, 434
Hassan, 2020, Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration, J. Mater. Cycles Waste Manag., 22, 1218, 10.1007/s10163-020-01014-5
Hemdan, 2020, The destruction of Escherichia coli adhered to pipe surfaces in a model drinking water distribution system via various antibiofilm agents, Water Environ. Res., 92, 2155, 10.1002/wer.1388
Hemdan, 2021, The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention, World J. Microbiol. Biotechnol., 37, 10.1007/s11274-021-03008-3
Hemdan, 2019, Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment, Environ. Sci. Pollut. Res., 26, 9508, 10.1007/s11356-019-04431-8
Hung, 2009, Planar Hall effect in biosensor with a tilted angle of the cross-junction, J. Magn. Magn. Mater., 321, 3839, 10.1016/j.jmmm.2009.05.076
Ibrahim, 2019, Survival of E. coli O157:H7, Salmonella Typhimurium, HAdV2 and MNV-1 in river water under dark conditions and varying storage temperatures, Sci. Total Environ., 648, 1297, 10.1016/j.scitotenv.2018.08.275
Jin, 2015, Efficient bacteria capture and inactivation by cetyltrimethylammonium bromide modified magnetic nanoparticles, Colloids Surfaces B Biointerfaces, 136, 659, 10.1016/j.colsurfb.2015.10.009
Jung, 2001, TiO2-SiO2 mixed oxide modified with H2SO4. I. Characterization of the microstructure of metal oxide and sulfate, Appl. Catal. A Gen., 208, 393, 10.1016/S0926-860X(00)00737-7
Khalil, 2019, Biocompatibility enhancement of graphene oxide-silver nanocomposite by functionalisation with polyvinylpyrrolidone, IET Nanobiotechnology, 13, 816, 10.1049/iet-nbt.2018.5321
Kolhatkar, 2013, Tuning the Magnetic Properties of Nanoparticles, Int. J. Mol. Sci., 14, 15977, 10.3390/ijms140815977
Kondrashova, N.B., Valtsifer, V.A., Strelnikov, V.N., Mitrofanov, V.Y., Uporov, S.A., n.d. MAGNETIC PROPERTIES OF SILICA WITH MESOPORES STRUCTURED AS MCM-48.
Kumar, 2018, Cation distributions and magnetism of Al-substituted CoFe2O4 - NiFe2O4 solid solutions synthesized by sol-gel auto-combustion method, Ceram. Int., 44, 20708, 10.1016/j.ceramint.2018.08.065
Kurtan, 2013, Temperature dependent magnetic properties of CoFe2O 4/CTAB nanocomposite synthesized by sol-gel auto-combustion technique, Ceram. Int., 39, 6551, 10.1016/j.ceramint.2013.01.088
Pauling, 1960
Liu, 2016, Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting, Electrochim. Acta, 211, 871, 10.1016/j.electacta.2016.06.113
Liu, 2020, Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review, J. Hazard. Mater., 388, 122026, 10.1016/j.jhazmat.2020.122026
Liu, 2020, Significantly enhanced photocurrent density in NiCo2O4/a-C/Si photoanode for water splitting, Appl. Surf. Sci., 529, 10.1016/j.apsusc.2020.147155
Lodhi, 2014, New Mg0.5CoxZn0.5−xFe2O4 nano-ferrites: Structural elucidation and electromagnetic behavior evaluation, Curr. Appl. Phys., 14, 716, 10.1016/j.cap.2014.02.021
Mansour, 2019, Fabrication and Characterization of a Photodiode Based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP), Silicon, 11, 1989, 10.1007/s12633-018-0016-9
Mansour, 2019, Structural, optical and galvanomagnetical properties of low cost synthesised nanostructure Cu2S films, Int. J. Microstruct. Mater. Prop., 14, 272
Moradmard, 2015, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles, J. Alloys Compd., 650, 116, 10.1016/j.jallcom.2015.07.269
Nahrawy, 2020, High performance of talented copper/magneso-zinc titanate nanostructures as biocidal agents for inactivation of pathogens during wastewater disinfection, Appl Nanosci, 10, 3585, 10.1007/s13204-020-01454-3
Nahrawy, A.M. El, Hemdan, B.A., Hammad, A.B.A., Luther, A., Abia, K., Bakr, A.M., 2019. Microstructure and Antimicrobial Properties of Bioactive Cobalt Co-Doped Copper Aluminosilicate Nanocrystallines.
Naik, 2018, Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method, J. Mater. Sci. Mater. Electron., 29, 20395, 10.1007/s10854-018-0174-y
Najmoddin, 2014, XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4, Ceram. Int., 40, 3619, 10.1016/j.ceramint.2013.09.063
Nasr, 2019, Potential use of treated domestic sewage for cultivation of biofuel crops in Egypt, Int. J. Environ. Sci. Technol., 16, 7433, 10.1007/s13762-018-2101-4
Ossai, 2020, Remediation of soil and water contaminated with petroleum hydrocarbon: A review, Environmental Technology & Innovation, 17, 100526, 10.1016/j.eti.2019.100526
Pal, 2014, Simplistic Theoretical Model for Optoelectronic Properties of Compound Semiconductors, J. Mater. Phys. Chem., 2, 20
Qu, 2006, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles, Mater. Lett., 60, 3548, 10.1016/j.matlet.2006.03.055
Radwan, 2020, Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives, Bioorg. Chem., 96, 103516, 10.1016/j.bioorg.2019.103516
Rasheed, 2016, ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications, Ceram. Int., 42, 15747, 10.1016/j.ceramint.2016.07.036
Reddy, 2005, Correlation between optical electronegativity, molar refraction, ionicity and density of binary oxides, silicates and minerals, Solid State Ionics, 176, 401, 10.1016/j.ssi.2004.07.041
Roșca, 2020, Impact of anthropogenic activities on water quality parameters of glacial lakes from Rodnei mountains, Romania. Environ. Res., 182
Saffari, 2015, Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2−xO4 ferrite nanoparticles, Ceram. Int., 41, 7352, 10.1016/j.ceramint.2015.02.038
Sertkol, 2010, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route, J. Magn. Magn. Mater., 322, 866, 10.1016/j.jmmm.2009.11.018
Sheoran, 2020, Structural and multiferroic properties of BiFeO3/MgLa0.025Fe1.975O4 nanocomposite synthesized by sol–gel auto combustion route, J. Mater. Sci. Mater. Electron., 31, 2777, 10.1007/s10854-019-02817-5
Singh, 2018, 223
Singhal, 2007, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route, J. Solid State Chem., 180, 296, 10.1016/j.jssc.2006.10.010
Sivakumar, 2011, Synthesis and characterization of nickel ferrite magnetic nanoparticles, Mater. Res. Bull., 46, 2208, 10.1016/j.materresbull.2011.09.009
Slimani, 2018, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution, Ceram. Int., 44, 14242, 10.1016/j.ceramint.2018.05.028
Sundrarajan, 2015, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Adv. Powder Technol., 26, 1294, 10.1016/j.apt.2015.07.001
Tripathy, 2015, Refractive indices of semiconductors from energy gaps, Opt. Mater. (Amst), 46, 240, 10.1016/j.optmat.2015.04.026
Yan, 2017, Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms, Chem. Eng. J., 314, 612, 10.1016/j.cej.2016.12.019
Zhan, 2014, Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles, J. Hazard. Mater., 274, 115, 10.1016/j.jhazmat.2014.03.067