Spectroelectrochemistry of EuCl3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

Electroanalysis - Tập 28 Số 9 - Trang 2158-2165 - 2016
Cynthia A. Schroll1, Sayandev Chatterjee2, Tatiana G. Levitskaia2, William R. Heineman1, Samuel A. Bryan2
1Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172
2Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352

Tóm tắt

AbstractKey electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl and 3 LiCl−2 CsCl) at 873 K. Cyclic voltammetry was used to determine the reduction potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin‐layer spectroelectrochemistry were used to obtain the number of electrons transferred, reduction potentials and diffusion coefficients for Eu3+ in each eutectic melt. The reduction potentials determined by thin‐layer spectroelectrochemistry were essentially the same as those obtained using cyclic voltammetry. The diffusion coefficient for Eu3+ was the largest in the 3 LiCl−NaCl melt, showed a negative shift in the 3 LiCl−2 KCl melt, and was the smallest in the LiCl−RbCl and 3 LiCl−2 CsCl eutectic melts. The basic one‐electron reversible electron transfer for Eu3+/2+ was not affected by melt composition.

Từ khóa


Tài liệu tham khảo

10.1016/j.jpcs.2004.07.022

10.1016/0149-1970(96)00007-8

10.1016/S0925-8388(98)00166-2

10.1016/j.jiec.2008.08.006

10.1149/1.2131289

Novoselova A., 2001, Proceedings of the 6th International Symposium on Molten Salt Chemistry and Technology, 253

Novoselova A. V., 2003, Russ. J. Phys. Chem., 77, 119

10.1016/S0013-4686(00)00708-8

10.1016/j.jnucmat.2005.04.034

10.1134/S1023193507080150

10.1016/j.jelechem.2007.01.018

10.1016/j.electacta.2009.06.016

Novoselova A., 2001, Z Naturforsch. A, 56, 754, 10.1515/zna-2001-1110

10.1023/A:1014805218798

10.1134/S1023193510060145

10.1039/tf9595501904

10.1149/1.2427811

10.1149/1.2095904

10.1149/1.1837035

10.1016/j.jnucmat.2005.04.038

10.1016/j.jallcom.2005.04.119

10.5796/electrochemistry.77.614

10.1016/S0925-8388(98)00187-X

10.1016/0020-1650(70)80185-4

10.1016/j.jnucmat.2011.09.017

10.1016/j.jelechem.2006.02.036

10.1016/j.electacta.2008.07.086

10.1016/j.jnucmat.2011.03.048

10.1016/j.jct.2010.03.013

10.1016/j.jelechem.2010.10.027

10.1021/ac60216a003

10.1002/elan.201200143

10.1002/elan.200904651

10.1021/ac200551n

10.1021/es020601l

10.1021/ac970322u

10.1021/ac970520l

10.1016/0022-1902(59)80233-5

10.1080/18811248.2005.9711055

10.1021/ic701415z

10.1134/S1023193507080174

10.1134/S1023193510060078

10.1016/j.microc.2011.04.013

10.1515/zna-2007-1212

10.1016/j.jnucmat.2013.02.003

10.1524/ract.2009.1596

10.1515/zna-2007-3-412

10.1016/j.jnucmat.2010.12.004

10.1021/ac402518p

10.1007/s10973-008-9399-y

10.1515/zna-2001-1108

10.1021/ac50055a019

Kissinger P. T., Laboratory Techniques in Electroanalytical Chemistry, 2nd

10.1021/ed053p594

Kuznetsov S. A., 2006, J. New Mat. Electr. Sys., 9, 313