Spectral properties of pseudo-resolvents under structured perturbations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arendt W, Batty CJK, Hieber M, Neubrander F (2001) Vector-valued Laplace transforms and Cauchy problems. In: Monographs in mathematics, vol 96. Birkhäuser, Basel
Bontsema J (1989) Dynamic stabilization of large flexible space structures. Ph.D. thesis, Rijksuniversiteit Groningen, The Netherlands
Edmunds DE, Evans WD (1987) Spectral theory and differential operators. In: Oxford mathematical monographs. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York
Engel KJ, Nagel R (2000) One-parameter semigroups for linear evolution equations. Springer, New York
Hadd S (2005) Unbounded perturbations of C 0-semigroups on Banach spaces and applications. Semigroup Forum 70: 451–465
Hinrichsen D, Pritchard AJ (1994) Robust stability of linear evolution operators on Banach spaces. SIAM J Control Optim 32(6): 1503–1541
Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I: modelling, state space analysis, stability and robustness. In: Texts in applied mathematics, vol 48. Springer, Berlin
Kato T (1976) Perturbation theory for linear operators, 2nd edn. Springer, Berlin (Grundlehren der Mathematischen Wissenschaften, Band 132)
Kisyński J (2002) Distribution semigroups and one parameter semigroups. Bull Pol Acad Sci Math 50(2): 189–216
Kunstmann P-C (1999) Distribution semigroups and abstract Cauchy problems. Trans Am Math Soc 351(2): 837–856
Kunstmann P-C (2001) Laplace transform theory for logarithmic regions. In: Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998). Lecture notes in pure and applied mathematics, vol 215. Dekker, New York, pp 125–138
Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I, Abstract parabolic systems. In: Encyclopedia of mathematics and its applications, vol 74. Cambridge University Press, Cambridge
Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I, Abstract hyperbolic-type systems over a finite time horizon. In: Encyclopedia of mathematics and its applications, vol 75. Cambridge University Press, Cambridge
Le Gorrec Y, Zwart HJ, Maschke B (2005) Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J Control Optim 44(5): 1864–1892
Lions J-L (1960) Les semi groupes distributions. Portugal Math 19: 141–164
Opmeer MR (2005) Infinite-dimensional linear systems: a distributional approach. Proc London Math Soc 91(3): 738–760
Opmeer MR, private communication
Opmeer MR (2006) Model reduction for controller design for infinite-dimensional systems. Ph.D. thesis, University of Groningen
Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. In: Applied mathematical sciences, vol 44. Springer, New York
Salamon D (1987) Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans Am Math Soc 300(2): 383–431
Schwartz L (1966) Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, no. IX–X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris
Staffans OJ (2002) Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems. Math Control Signals Syst 15: 291–315
Staffans OJ (2005) Well-posed linear systems. In: Encyclopedia of mathematics and its applications, vol 103. Cambridge University Press, Cambridge
Taylor AE, Lay DC (1980) Introduction to functional analysis, 2nd edn. Wiley, New York
Weiss G, Xu C-Z (2005) Spectral properties of infinite-dimensional closed-loop systems. Math Control Signals Syst 17: 153–172
Weiss G, Curtain RF (2006) Strong stabilization of almost passive linear systems. In: Proceedings of the 45th IEEE conference on decision and control, San Diego. IEEE, NJ, USA, pp 4688-4693 (CDROM)