Spectral data treatments for impervious endmember derivation and fraction mapping from Landsat ETM+ imagery: a comparative analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnold C L Jr, Gibbons C J (1996). Impervious surface coverage: the emergence of a key environmental indicator. J Am Plann Assoc, 62 (2): 243–258
Chavez P S, Sides S C, Anderson J A (1991). Comparison of three different methods to merge multiresolution and multispectral data-Landsat TM and SPOT panchromatic. Photogramm Eng Remote Sensing, 57(3): 295–303
Chen X, Li L (2008). A comparison of spectral mixture analysis methods for urban landscape using Landsat ETM+ data: Los Angeles, CA. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing, China: 635–640
Foody G M (2002). Status of land cover classification accuracy assessment. Remote Sens Environ, 80(1): 185–201
González-Audícana M, Otazu X, Fors O, Seco A (2005). Comparison between Mallat’s and the’ à trous’ discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int J Remote Sens, 26(3): 595–614
González-Audícana M, Saleta J L, Catalán R G, García R (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1291–1299
Green A A, Berman M, Switzer P, Craig M D (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1): 65–74
Hu X, Weng Q (2009). Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multilayer perceptron neural networks. Remote Sens Environ, 113(10): 2089–2102
Im J, Lu Z, Rhee J, Quackenbush L J (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sens Environ, 117: 102–113
Ji M, Chen W, Wang W (2012). Improving spectral fidelity of WorldView-2 image fusion via a constrained generalized intensity-hue-saturation model with localized weight structure through land cover classification. J Appl Remote Sens, 6(1): 061707
Ji M, Feng J (2011). Subpixel measurement of mangrove canopy closure via spectral mixture analysis. Front Earth Sci, 5(2): 130–137
Ji M, Jensen J R (1999). Effectiveness of subpixel analysis in detecting and quantifying urban imperviousness from Landsat Thematic Mapper imagery. Geocarto Int, 14(4): 33–41
Jing L, Cheng Q (2011). An image fusion method for misaligned panchromatic and multispectral data. Int J Remote Sens, 32(4): 1125–1137
Li S, Kwok J T, Wang Y (2002). Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images. Inf Fusion, 3(1): 17–23
Lu D, Batistella M, Moran E, Mausel P (2004). Application of spectral mixture analysis to Amazonian land-use and land-cover classification. Int J Remote Sens, 25(23): 5345–5358
Lu D, Hetrick S, Moran E (2011). Impervious surface mapping with Quickbird imagery. Int J Remote Sens, 32(9): 2519–2533
Lu D, Moran E, Batistella M (2003). Linear mixture model applied to Amazonian vegetation classification. Remote Sens Environ, 87(4): 456–469
Lu D, Weng Q (2004). Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm Eng Remote Sensing, 70(9): 1053–1062
Lu D, Weng Q (2005). Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogramm Eng Remote Sensing, 71(11): 1275–1284
Lu D, Weng Q (2006). Use of impervious surface in urban land-use classification. Remote Sens Environ, 102(1–2): 146–160
Mohapatra R P, Wu C (2008). Subpixel imperviousness estimation with IKONOS imagery: an artificial neural network approach. London: Taylor & Francis Group
Powell R L, Roberts D A, Dennison P E, Hess L L (2007). Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens Environ, 106(2): 253–267
Rashed T (2008). Remote sensing of within-class change in urban neighborhood structures. Comput Environ Urban Syst, 32(5): 343–354
Roberts D, Gardner M, Church R, Ustin S, Scheer G, Green R (1998). Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens Environ, 65(3): 267–279
Smith M O, Johnson P E, Adams J B (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. J Geophys Res, 90(S02): C797–C804
van de Voorde T, de Roeck T, Canters F (2009). A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas. Int J Remote Sens, 30(18): 4785–4806
Wu C (2004). Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sens Environ, 93(4): 480–492
Wu C (2009). Quantifying high-resolution impervious surfaces using spectral mixture analysis. Int J Remote Sens, 30(11): 2915–2932
Wu C, Murray A T (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ, 84(4): 493–505
Xu H (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens, 27(14): 3025–3033
Yang B, Kim M, Madden M (2012). Assessing optimal image fusion methods for very high spatial resolution satellite images to support coastal monitoring. GIScience & Remote Sensing, 49(5): 687–710
Yuan F, Bauer M E (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ, 106(3): 375–386