Spectral cluster estimates for Schrödinger operators of relativistic type
Tài liệu tham khảo
Blair, 2019, Quasimode, eigenfunction and spectral projection bounds for Schrödinger operators on manifolds with critically singular potentials, J. Geom. Anal.
Bogdan, 2003, Harnack inequality for stable processes on d-sets, Stud. Math., 158, 163, 10.4064/sm158-2-5
Bogdan, 2007, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271, 179, 10.1007/s00220-006-0178-y
Bourgain, 2015, On Lp-resolvent estimates and the density of eigenvalues for compact Riemannian manifolds, Commun. Math. Phys., 333, 1483, 10.1007/s00220-014-2077-y
Burq, 2008, Global existence for energy critical waves in 3-D domains, J. Am. Math. Soc., 21, 831, 10.1090/S0894-0347-08-00596-1
Carmona, 1990, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91, 117, 10.1016/0022-1236(90)90049-Q
Carracedo, 2001, The Theory of Fractional Powers of Operators, vol. 187
Chen, 2015, Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbation, Trans. Am. Math. Soc., 367, 5237, 10.1090/S0002-9947-2014-06190-4
Chen, 2003, Conditional gauge theorem for non-local Feynman-Kac transforms, Probab. Theory Relat. Fields, 125, 45, 10.1007/s004400200219
Daubechies, 1983, One-electron relativistic molecules with Coulomb interaction, Commun. Math. Phys., 90, 497, 10.1007/BF01216181
Dinh, 2017, Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary, J. Differ. Equ., 12, 8804, 10.1016/j.jde.2017.08.045
Ferreira, 2014, On Lp resolvent estimates for Laplace-Beltrami operators on compact manifolds, Forum Math., 26
Frank, 2017, Endpoint resolvent estimates for compact Riemannian manifolds, J. Funct. Anal., 272, 3904, 10.1016/j.jfa.2016.11.012
Frank, 2007, Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value, Commun. Math. Phys., 275, 479, 10.1007/s00220-007-0307-2
Frank, 2008, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Am. Math. Soc., 21, 925, 10.1090/S0894-0347-07-00582-6
Gimperlein, 2014, Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators, J. Evol. Equ., 14, 49, 10.1007/s00028-013-0206-2
Huang
Kenig, 1987, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 329, 10.1215/S0012-7094-87-05518-9
Laskin, 2000, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298, 10.1016/S0375-9601(00)00201-2
Laskin, 2000, Fractals and quantum mechanics, Chaos, Interdiscip. J. Nonlinear Sci., 10, 780, 10.1063/1.1050284
Laskin, 2002, Fractional Schrödinger equation, Phys. Rev. E, 66, 10.1103/PhysRevE.66.056108
Li, 1986, On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153, 10.1007/BF02399203
Lieb, 1987, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112, 147, 10.1007/BF01217684
Lieb, 1988, The stability and instability of relativistic matter, Commun. Math. Phys., 118, 177, 10.1007/BF01218577
Nicola, 2009, Slicing surfaces and the Fourier restriction conjecture, Proc. Edinb. Math. Soc. (2), 52, 515, 10.1017/S0013091507000995
Saloff-Coste, 1992, A note on Poincaré, Sobolev, and Harnack inequalities, Int. Math. Res. Not., 2
Shao, 2014, Uniform Sobolev resolvent estimates for the Laplace-Beltrami operator on compact manifolds, Int. Math. Res. Not., 2014, 3439, 10.1093/imrn/rnt051
Sogge, 1988, Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., 77, 123, 10.1016/0022-1236(88)90081-X
Sogge, 1993
Song, 2006, Two-sided estimates on the density of the Feynman-Kac semigroups of stable-like processes, Electron. J. Probab., 11, 146
Stein, 1993
Sturm, 1992, Heat kernel bounds on manifolds, Math. Ann., 292, 149, 10.1007/BF01444614
Taylor, 1991, Pseudodifferential Operators and Nonlinear PDE, vol. 100
Wang, 2015, Heat kernel for fractional diffusion operators with perturbations, Forum Math., 27, 973, 10.1515/forum-2012-0074